Yanushauakas | The Oblique Derivative Problem of Potential Theory | Buch | 978-1-4684-1676-3 | sack.de

Buch, Englisch, 260 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 503 g

Reihe: Monographs in Contemporary Mathematics

Yanushauakas

The Oblique Derivative Problem of Potential Theory


Softcover Nachdruck of the original 1. Auflage 1989
ISBN: 978-1-4684-1676-3
Verlag: Springer US

Buch, Englisch, 260 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 503 g

Reihe: Monographs in Contemporary Mathematics

ISBN: 978-1-4684-1676-3
Verlag: Springer US


An important part of the theory of partial differential equations is the theory of boundary problems for elliptic equations and systems of equations. Among such problems those of greatest interest are the so-called non-Fredholm boundary prob­ lems, whose investigation reduces, as a rule, to the study of singular integral equa­ tions, where the Fredholm alternative is violated for these problems. Thanks to de­ velopments in the theory of one-dimensional singular integral equations [28, 29], boundary problems for elliptic equations with two independent variables have been completely studied at the present time [13, 29], which cannot be said about bound­ ary problems for elliptic equations with many independent variables. A number of important questions in this area have not yet been solved, since one does not have sufficiently general methods for investigating them. Among the boundary problems of great interest is the oblique derivative problem for harmonic functions, which can be formulated as follows: In a domain D with sufficiently smooth boundary r find a harmonic function u(X) which, on r, satisfies the condition n n ~ au ~.:;. ai (X) ax. = f (X),.:;. [ai (X)]2 = 1, i=l t i=l where aI,., an,fare sufficiently smooth functions defined on r. Obviously the left side of the boundary condition is the derivative of the function u(X) in the direction of the vector P(X) with components al (X),., an(X).

Yanushauakas The Oblique Derivative Problem of Potential Theory jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Foundations of Potential Theory.- 1. Harmonic Functions and Potential Theory.- 2. Green’s Formula and Its Consequences.- 3. Basic Boundary Problems of Potential Theory.- 4. Investigation of Boundary Problems by the Method of Integral Equations.- 5. Harmonic Functions in Axially Symmetric Domains.- 6. General Second-Order Elliptic Equations.- 7. Functions Represented by Potential-Type Integrals.- 8. Gradient Vector Fields of Functions.- 2. Oblique Derivative Problem for Elliptic Equations.- 1. Reduction of the Oblique Derivative Problem to Fredholm Integral Equations.- 2. Reduction of the Oblique Derivative Problem for Harmonic Functions to Fredholm Equations.- 3. Simplest Properties of the Non-Fredholm Oblique Derivative Problem.- 4. Global Methods of Investigation of the Non-Fredholm Oblique Derivative Problem.- 3. Oblique Derivative Problem with Direction of Differentiation Going into the Tangent Plane.- 1. Simplest Consequences of the Maximum Principle.- 2. Generalizations of the Argument Principle.- 3. Measure of Overdeterminedness of the Oblique Derivative Problem.- 4. Oblique Derivative Problem with Polynomial Coefficients.- 5. Reduction of the Oblique Derivative Problem to a Fredholm Integrodifferential Equation.- 6. Boundary Problem for a System of Harmonic Functions.- 4. Systems of Partial Differential Equations Related to Multidimensional Generalizations of the Cauchy-Riemann System.- 1. Analog of the Riemann-Hilbert Problem.- 2. Generalization of a Holomorphic Vector.- 3. Second-Order Systems of Equations.- 4. Elliptic Systems Depending on a Parameter.- 5. Oblique Derivative Problem for Harmonic Functions of Two Variables.- 1. Boundary Properties of Conjugate Harmonic Functions.- 2. An Auxiliary Problem.- 3. Oblique Derivative Problem.- 4. ObliqueDerivative Problem with Discontinuities in the Boundary Condition.- 5. Variation of Level Lines of a Harmonic Function of a Closed Contour.- 6. Multiply Connected Domains.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.