Yarlagadda | Analog and Digital Signals and Systems | E-Book | www.sack.de
E-Book

E-Book, Englisch, 555 Seiten

Yarlagadda Analog and Digital Signals and Systems


1. Auflage 2010
ISBN: 978-1-4419-0034-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 555 Seiten

ISBN: 978-1-4419-0034-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents a systematic, comprehensive treatment of analog, discrete signal analysis and synthesis and an introduction to analog communication theory. The material is divided into five parts. The first part (Chapters 1-3) is mathematically oriented and deals with continuous-time (analog) signals. The second part (Chapters 4-5) is again mathematically based and deals with Fourier transforms, Hartley transforms, Laplace and Hilbert transforms. The third part (Chapters 6-7) presents basic system analysis, approximations, and analog filter circuits using op-amps. The fourth part (Chapters 8-9) deals with discrete signals, fast algorithms and digital filters. The fifth part deals with an introduction to analog communication systems.

Yarlagadda Analog and Digital Signals and Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Analog and Digital Signals and Systems;1
1.1;Note to Instructors;5
1.2;Preface;6
1.2.1;Summary of the Chapters;6
1.2.2;Suggested Course Content;7
1.3;Acknowledgements;9
1.4;Contents;10
1.5;List of Tables;22
2;Basic Concepts in Signals;24
2.1;1.1 Introduction to the Book and Signals;24
2.1.1;1.1.1 Different Ways of Looking at a Signal;24
2.1.2;1.1.2 Continuous-Time and Discrete-Time Signals;26
2.1.3;1.1.3 Analog Versus Digital Signal Processing;28
2.1.4;1.1.4 Examples of Simple Functions;29
2.2;1.2 Useful Signal Operations;31
2.2.1;1.2.1 Time Shifting;31
2.2.2;1.2.2 Time Scaling;31
2.2.3;1.2.3 Time Reversal;31
2.2.4;1.2.4 Amplitude Shift;31
2.2.5;1.2.5 Simple Symmetries: Even and Odd Functions;32
2.2.6;1.2.6 Products of Even and Odd Functions;32
2.2.7;1.2.7 Signum (or sgn) Function;33
2.2.8;1.2.8 Sinc and Sinc2 Functions;33
2.2.9;1.2.9 Sine Integral Function;33
2.3;1.3 Derivatives and Integrals of Functions;34
2.3.1;1.3.1 Integrals of Functions with Symmetries;35
2.3.2;1.3.2 Useful Functions from Unit Step Function;35
2.3.3;1.3.3 Leibniz’s Rule;36
2.3.4;1.3.4 Interchange of a Derivative and an Integral;36
2.3.5;1.3.5 Interchange of Integrals;36
2.4;1.4 Singularity Functions;37
2.4.1;1.4.1 Unit Impulse as the Limit of a Sequence;38
2.4.2;1.4.2 Step Function and the Impulse Function;39
2.4.3;1.4.3 Functions of Generalized Functions;40
2.4.4;1.4.4 Functions of Impulse Functions;41
2.4.5;1.4.5 Functions of Step Functions;42
2.5;1.5 Signal Classification Based on Integrals;42
2.5.1;1.5.1 Effects of Operations on Signals;44
2.5.2;1.5.2 Periodic Functions;44
2.5.3;1.5.3 Sum of Two Periodic Functions;46
2.6;1.6 Complex Numbers, Periodic, and Symmetric Periodic Functions;47
2.6.1;1.6.1 Complex Numbers;48
2.6.2;1.6.2 Complex Periodic Functions;50
2.6.3;1.6.3 Functions of Periodic Functions;50
2.6.4;1.6.4 Periodic Functions with Additional Symmetries;51
2.7;1.7 Examples of Probability Density Functions and their Moments;52
2.8;1.8 Generation of Periodic Functions from Aperiodic Functions;54
2.9;1.9 Decibel;55
2.10;1.10 Summary;57
2.11;Problems;58
3;Convolution and Correlation;61
3.1;2.1 Introduction;61
3.1.1;2.1.1 Scalar Product and Norm;62
3.2;2.2 Convolution;63
3.2.1;2.2.1 Properties of the Convolution Integral;63
3.2.2;2.2.2 Existence of the Convolution Integral;66
3.3;2.3 Interesting Examples;66
3.4;2.4 Convolution and Moments;72
3.4.1;2.4.1 Repeated Convolution and the Central Limit Theorem;74
3.4.2;2.4.2 Deconvolution;75
3.5;2.5 Convolution Involving Periodic and Aperiodic Functions;76
3.5.1;2.5.1 Convolution of a Periodic Function with an Aperiodic Function;76
3.5.2;2.5.2 Convolution of Two Periodic Functions;77
3.6;2.6 Correlation;78
3.6.1;2.6.1 Basic Properties of Cross-Correlation Functions;79
3.6.2;2.6.2 Cross-Correlation and Convolution;79
3.6.3;2.6.3 Bounds on the Cross-Correlation Functions;80
3.6.4;2.6.4 Quantitative Measures of Cross-Correlation;81
3.7;2.7 Autocorrelation Functions of Energy Signals;85
3.8;2.8 Cross- and Autocorrelation of Periodic Functions;87
3.9;2.9 Summary;90
3.10;Problems;90
4;Fourier Series;92
4.1;3.1 Introduction;92
4.2;3.2 Orthogonal Basis Functions;93
4.2.1;3.2.1 Gram-Schmidt Orthogonalization;95
4.3;3.3 Approximation Measures;96
4.3.1;3.3.1 Computation of c[k] Based on Partials;98
4.3.2;3.3.2 Computation of c[k] Using the Method of Perfect Squares;98
4.3.3;3.3.3 Parseval’s Theorem;99
4.4;3.4 Fourier Series;101
4.4.1;3.4.1 Complex Fourier Series;101
4.4.2;3.4.2 Trigonometric Fourier Series;104
4.4.3;3.4.3 Complex F-series and the Trigonometric F-series Coefficients-Relations;104
4.4.4;3.4.4 Harmonic Form of Trigonometric Fourier Series;104
4.4.5;3.4.5 Parseval’s Theorem Revisited;105
4.4.6;3.4.6 Advantages and Disadvantages of the Three Forms of Fourier Series;106
4.5;3.5 Fourier Series of Functions with Simple Symmetries;106
4.5.1;3.5.1 Simplification of the Fourier Series Coefficient Integral;107
4.6;3.6 Operational Properties of Fourier Series;108
4.6.1;3.6.1 Principle of Superposition;108
4.6.2;3.6.2 Time Shift;108
4.6.3;3.6.3 Time and Frequency Scaling;109
4.6.4;3.6.4 Fourier Series Using Derivatives;110
4.6.5;3.6.5 Bounds and Rates of Fourier Series Convergence by the Derivative Method;112
4.6.6;3.6.6 Integral of a Function and Its Fourier Series;114
4.6.7;3.6.7 Modulation in Time;114
4.6.8;3.6.8 Multiplication in Time;115
4.6.9;3.6.9 Frequency Modulation;116
4.6.10;3.6.10 Central Ordinate Theorems;116
4.6.11;3.6.11 Plancherel’s Relation (or Theorem);116
4.6.12;3.6.12 Power Spectral Analysis;116
4.7;3.7 Convergence of the Fourier Series and the Gibbs Phenomenon;117
4.7.1;3.7.1 Fourier’s Theorem;117
4.7.2;3.7.2 Gibbs Phenomenon;118
4.7.3;3.7.3 Spectral Window Smoothing;120
4.8;3.8 Fourier Series Expansion of Periodic Functions with Special Symmetries;121
4.8.1;3.8.1 Half-Wave Symmetry;121
4.8.2;3.8.2 Quarter-Wave Symmetry;123
4.8.3;3.8.3 Even Quarter-Wave Symmetry;123
4.8.4;3.8.4 Odd Quarter-Wave Symmetry;123
4.8.5;3.8.5 Hidden Symmetry;124
4.9;3.9 Half-Range Series Expansions;124
4.10;3.10 Fourier Series Tables;125
4.11;3.11 Summary;125
4.12;Problems;127
5;Fourier Transform Analysis;130
5.1;4.1 Introduction;130
5.2;4.2 Fourier Series to Fourier Integral;130
5.2.1;4.2.1 Amplitude and Phase Spectra;133
5.2.2;4.2.2 Bandwidth-Simplistic Ideas;135
5.3;4.3 Fourier Transform Theorems, Part 1;135
5.3.1;4.3.1 Rayleigh’s Energy Theorem;135
5.3.2;4.3.2 Superposition Theorem;136
5.3.3;4.3.3 Time Delay Theorem;137
5.3.4;4.3.4 Scale Change Theorem;137
5.3.5;4.3.5 Symmetry or Duality Theorem;139
5.3.6;4.3.6 Fourier Central Ordinate Theorems;140
5.4;4.4 Fourier Transform Theorems, Part 2;140
5.4.1;4.4.1 Frequency Translation Theorem;141
5.4.2;4.4.2 Modulation Theorem;141
5.4.3;4.4.3 Fourier Transforms of Periodic and Some Special Functions;142
5.4.4;4.4.4 Time Differentiation Theorem;145
5.4.5;4.4.5 Times-t Property: Frequency Differentiation Theorem;147
5.4.6;4.4.6 Initial Value Theorem;149
5.4.7;4.4.7 Integration Theorem;149
5.5;4.5 Convolution and Correlation;150
5.5.1;4.5.1 Convolution in Time;150
5.5.2;4.5.2 Proof of the Integration Theorem;153
5.5.3;4.5.3 Multiplication Theorem (Convolution in Frequency);154
5.5.4;4.5.4 Energy Spectral Density;156
5.6;4.6 Autocorrelation and Cross-Correlation;157
5.6.1;4.6.1 Power Spectral Density;159
5.7;4.7 Bandwidth of a Signal;160
5.7.1;4.7.1 Measures Based on Areas of the Time and Frequency Functions;160
5.7.2;4.7.2 Measures Based on Moments;161
5.7.3;4.7.3 Uncertainty Principle in Fourier Analysis;162
5.8;4.8 Moments and the Fourier Transform;164
5.9;4.9 Bounds on the Fourier Transform;165
5.10;4.10 Poisson’s Summation Formula;166
5.11;4.11 Interesting Examples and a Short Fourier Transform Table;166
5.11.1;4.11.1 Raised-Cosine Pulse Function;167
5.12;4.12 Tables of Fourier Transforms Properties and Pairs;168
5.13;4.13 Summary;168
5.14;Problems;168
6;Relatives of Fourier Transforms;175
6.1;5.1 Introduction;175
6.2;5.2 Fourier Cosine and Sine Transforms;176
6.3;5.3 Hartley Transform;179
6.4;5.4 Laplace Transforms;181
6.4.1;5.4.1 Region of Convergence (ROC);183
6.4.2;5.4.2 Inverse Transform of Two-Sided Laplace Transform;184
6.4.3;5.4.3 Region of Convergence (ROC) of Rational Functions - Properties;185
6.5;5.5 Basic Two-Sided Laplace Transform Theorems;185
6.5.1;5.5.1 Linearity;185
6.5.2;5.5.2 Time Shift;185
6.5.3;5.5.3 Shift in s;185
6.5.4;5.5.4 Time Scaling;185
6.5.5;5.5.5 Time Reversal;186
6.5.6;5.5.6 Differentiation in Time;186
6.5.7;5.5.7 Integration;186
6.5.8;5.5.8 Convolution;186
6.6;5.6 One-Sided Laplace Transform;186
6.6.1;5.6.1 Properties of the One-Sided Laplace Transform;187
6.6.2;5.6.2 Comments on the Properties (or Theorems) of Laplace Transforms;187
6.7;5.7 Rational Transform Functions and Inverse Laplace Transforms;194
6.7.1;5.7.1 Rational Functions, Poles, and Zeros;195
6.7.2;5.7.2 Return to the Initial and Final Value Theorems and Their Use;196
6.8;5.8 Solutions of Constant Coefficient Differential Equations Using Laplace Transforms;198
6.8.1;5.8.1 Inverse Laplace Transforms;199
6.8.2;5.8.2 Partial Fraction Expansions;199
6.9;5.9 Relationship Between Laplace Transforms and Other Transforms;203
6.9.1;5.9.1 Laplace Transforms and Fourier Transforms;204
6.9.2;5.9.2 Hartley Transforms and Laplace Transforms;205
6.10;5.10 Hilbert Transform;206
6.10.1;5.10.1 Basic Definitions;206
6.10.2;5.10.2 Hilbert Transform of Signals with Non-overlapping Spectra;208
6.10.3;5.10.3 Analytic Signals;209
6.11;5.11 Summary;210
6.12;Problems;210
7;Systems and Circuits;213
7.1;6.1 Introduction;213
7.2;6.2 Linear Systems, an Introduction;213
7.3;6.3 Ideal Two-Terminal Circuit Components and Kirchhoff ’s Laws;214
7.3.1;6.3.1 Two-Terminal Component Equations;215
7.3.2;6.3.2 Kirchhoff’s Laws;217
7.4;6.4 Time-Invariant and Time-Varying Systems;218
7.5;6.5 Impulse Response;219
7.5.1;6.5.1 Eigenfunctions;222
7.5.2;6.5.2 Bounded-Input/Bounded-Output (BIBO) Stability;222
7.5.3;6.5.3 Routh-Hurwitz Criterion (R-H criterion);223
7.5.4;6.5.4 Eigenfunctions in the Fourier Domain;226
7.6;6.6 Step Response;228
7.7;6.7 Distortionless Transmission;233
7.7.1;6.7.1 Group Delay and Phase Delay;233
7.8;6.8 System Bandwidth Measures;236
7.8.1;6.8.1 Bandwidth Measures Using the Impulse Response $ \curr h({\rm t})$ and Its Transform $\curr{ H({\rm j}\omega )}$;236
7.8.2;6.8.2 Half-Power or 3 dB Bandwidth;237
7.8.3;6.8.3 Equivalent Bandwidth or Noise Bandwidth;237
7.8.4;6.8.4 Root Mean-Squared (RMS) Bandwidth;238
7.9;6.9 Nonlinear Systems;239
7.9.1;6.9.1 Distortion Measures;240
7.9.2;6.9.2 Output Fourier Transform of a Nonlinear System;240
7.9.3;6.9.3 Linearization of Nonlinear System Functions;241
7.10;6.10 Ideal Filters;241
7.10.1;6.10.1 Low-Pass, High-Pass, Band-Pass, and Band-Elimination Filters;242
7.11;6.11 Real and Imaginary Parts of the Fourier Transform of a Causal Function;247
7.11.1;6.11.1 Relationship Between Real and Imaginary Parts of the Fourier Transform of a Causal Function Using Hilbert Transform;248
7.11.2;6.11.2 Amplitude Spectrum |H(jw)| to a Minimum Phase Function H(s);249
7.12;6.12 More on Filters: Source and Load Impedances;249
7.12.1;6.12.1 Simple Low-Pass Filters;251
7.12.2;6.12.2 Simple High-Pass Filters;251
7.12.3;6.12.3 Simple Band-Pass Filters;253
7.12.4;6.12.4 Simple Band-Elimination or Band-Reject or Notch Filters;255
7.12.5;6.12.5 Maximum Power Transfer;258
7.12.6;6.12.6 A Simple Delay Line Circuit;259
7.13;6.13 Summary;259
7.14;Problems;260
8;Approximations and Filter Circuits;263
8.1;7.1 Introduction;263
8.2;7.2 Bode Plots;266
8.2.1;7.2.1 Gain and Phase Margins;272
8.3;7.3 Classical Analog Filter Functions;274
8.3.1;7.3.1 Amplitude-Based Design;274
8.3.2;7.3.2 Butterworth Approximations;275
8.3.3;7.3.3 Chebyshev (Tschebyscheff) Approximations;277
8.4;7.4 Phase-Based Design;282
8.4.1;7.4.1 Maximally Flat Delay Approximation;283
8.4.2;7.4.2 Group Delay of Bessel Functions;284
8.5;7.5 Frequency Transformations;286
8.5.1;7.5.1 Normalized Low-Pass to High-Pass Transformation;286
8.5.2;7.5.2 Normalized Low-Pass to Band-Pass Transformation;288
8.5.3;7.5.3 Normalized Low-Pass to Band-Elimination Transformation;288
8.5.4;7.5.4 Conversions of Specifications from Low-Pass, High-Pass, Band-Pass, and Band Elimination Filters to Normalized Low-Pass Filters;290
8.6;7.6 Multi-terminal Components;293
8.6.1;7.6.1 Two-Port Parameters;293
8.6.2;7.6.2 Circuit Analysis Involving Multi-terminal Components and Networks;297
8.6.3;7.6.3 Controlled Sources;298
8.7;7.7 Active Filter Circuits;299
8.7.1;7.7.1 Operational Amplifiers, an Introduction;299
8.7.2;7.7.2 Inverting Operational Amplifier Circuits;300
8.7.3;7.7.3 Non-inverting Operational Amplifier Circuits;302
8.7.4;7.7.4 Simple Second-Order Low-Pass and All-Pass Circuits;304
8.8;7.8 Gain Constant Adjustment;305
8.9;7.9 Scaling;307
8.9.1;7.9.1 Amplitude (or Magnitude) Scaling, RLC Circuits;307
8.9.2;7.9.2 Frequency Scaling, RLC Circuits;308
8.9.3;7.9.3 Amplitude and Frequency Scaling in Active Filters;308
8.9.4;7.9.4 Delay Scaling;310
8.10;7.10 RC-CR Transformations: Low-Pass to High-Pass Circuits;312
8.11;7.11 Band-Pass, Band-Elimination and Biquad Filters;314
8.12;7.12 Sensitivities;318
8.13;7.13 Summary;321
8.14;Problems;321
9;Discrete-Time Signals and Their Fourier Transforms;330
9.1;8.1 Introduction;330
9.2;8.2 Sampling of a Signal;331
9.2.1;8.2.1 Ideal Sampling;331
9.2.2;8.2.2 Uniform Low-Pass Sampling or the Nyquist Low-Pass Sampling Theorem;333
9.2.3;8.2.3 Interpolation Formula and the Generalized Fourier Series;336
9.2.4;8.2.4 Problems Associated with Sampling Below the Nyquist Rate;338
9.2.5;8.2.5 Flat Top Sampling;341
9.2.6;8.2.6 Uniform Band-Pass Sampling Theorem;343
9.2.7;8.2.7 Equivalent continuous-time and discrete-time systems;344
9.3;8.3 Basic Discrete-Time (DT) Signals;344
9.3.1;8.3.1 Operations on a Discrete Signal;346
9.3.2;8.3.2 Discrete-Time Convolution and Correlation;348
9.3.3;8.3.3 Finite duration, right-sided, left-sided, two-sided, and causal sequences;349
9.3.4;8.3.4 Discrete-Time Energy and Power Signals;349
9.4;8.4 Discrete-Time Fourier Series;351
9.4.1;8.4.1 Periodic Convolution of Two Sequences with the Same Period;353
9.4.2;8.4.2 Parseval’s Identity;353
9.5;8.5 Discrete-Time Fourier Transforms;354
9.5.1;8.5.1 Discrete-Time Fourier Transforms (DTFTs);354
9.5.2;8.5.2 Discrete-Time Fourier Transforms of Real Signals with Symmetries;355
9.6;8.6 Properties of the Discrete-Time Fourier Transforms;358
9.6.1;8.6.1 Periodic Nature of the Discrete-Time Fourier Transform;358
9.6.2;8.6.2 Superposition or Linearity;359
9.6.3;8.6.3 Time Shift or Delay;360
9.6.4;8.6.4 Modulation or Frequency Shifting;360
9.6.5;8.6.5 Time Scaling;360
9.6.6;8.6.6 Differentiation in Frequency;361
9.6.7;8.6.7 Differencing;361
9.6.8;8.6.8 Summation or Accumulation;363
9.6.9;8.6.9 Convolution;363
9.6.10;8.6.10 Multiplication in Time;364
9.6.11;8.6.11 Parseval’s Identities;365
9.6.12;8.6.12 Central Ordinate Theorems;365
9.6.13;8.6.13 Simple Digital Encryption;365
9.7;8.7 Tables of Discrete-Time Fourier Transform (DTFT) Properties and Pairs;366
9.8;8.8 Discrete-Time Fourier-transforms from Samples of the Continuous-Time Fourier-Transforms;367
9.9;8.9 Discrete Fourier Transforms (DFTs);369
9.9.1;8.9.1 Matrix Representations of the DFT and the IDFT;371
9.9.2;8.9.2 Requirements for Direct Computation of the DFT;372
9.10;8.10 Discrete Fourier Transform Properties;373
9.10.1;8.10.1 DFTs and IDFTs of Real Sequences;373
9.10.2;8.10.2 Linearity;373
9.10.3;8.10.3 Duality;374
9.10.4;8.10.4 Time Shift;374
9.10.5;8.10.5 Frequency Shift;375
9.10.6;8.10.6 Even Sequences;375
9.10.7;8.10.7 Odd Sequences;375
9.10.8;8.10.8 Discrete-Time Convolution Theorem;376
9.10.9;8.10.9 Discrete-Frequency Convolution Theorem;377
9.10.10;8.10.10 Discrete-Time Correlation Theorem;378
9.10.11;8.10.11 Parseval’s Identity or Theorem;378
9.10.12;8.10.12 Zero Padding;378
9.10.13;8.10.13 Signal Interpolation;379
9.10.14;8.10.14 Decimation;381
9.11;8.11 Summary;381
9.12;Problems;381
10;Discrete Data Systems;385
10.1;9.1 Introduction;385
10.2;9.2 Computation of Discrete Fourier Transforms (DFTs);386
10.2.1;9.2.1 Symbolic Diagrams in Discrete-Time Representations;386
10.2.2;9.2.2 Fast Fourier Transforms (FFTs);387
10.3;9.3 DFT (FFT) Applications;390
10.3.1;9.3.1 Hidden Periodicity in a Signal;390
10.3.2;9.3.2 Convolution of Time-Limited Sequences;392
10.3.3;9.3.3 Correlation of Discrete Signals;395
10.3.4;9.3.4 Discrete Deconvolution;396
10.4;9.4 z-Transforms;398
10.4.1;9.4.1 Region of Convergence (ROC);399
10.4.2;9.4.2 z-Transform and the Discrete-Time Fourier Transform (DTFT);402
10.5;9.5 Properties of the z-Transform;402
10.5.1;9.5.1 Linearity;402
10.5.2;9.5.2 Time-Shifted Sequences;403
10.5.3;9.5.3 Time Reversal;403
10.5.4;9.5.4 Multiplication by an Exponential;403
10.5.5;9.5.5 Multiplication by n;404
10.5.6;9.5.6 Difference and Accumulation;404
10.5.7;9.5.7 Convolution Theorem and the z-Transform;404
10.5.8;9.5.8 Correlation Theorem and the z-Transform;405
10.5.9;9.5.9 Initial Value Theorem in the Discrete Domain;406
10.5.10;9.5.10 Final Value Theorem in the Discrete Domain;406
10.6;9.6 Tables of z-Transform Properties and Pairs;407
10.7;9.7 Inverse z-Transforms;408
10.7.1;9.7.1 Inversion Formula;408
10.7.2;9.7.2 Use of Transform Tables (Partial Fraction Expansion Method);409
10.7.3;9.7.3 Inverse z-Transforms by Power Series Expansion;412
10.8;9.8 The Unilateral or the One-Sided z-Transform;413
10.8.1;9.8.1 Time-Shifting Property;413
10.9;9.9 Discrete-Data Systems;415
10.9.1;9.9.1 Discrete-Time Transfer Functions;418
10.9.2;9.9.2 Schur-Cohn Stability Test;419
10.9.3;9.9.3 Bilinear Transformations;419
10.10;9.10 Designs by the Time and Frequency Domain Criteria;421
10.10.1;9.10.1 Impulse Invariance Method by Using the Time Domain Criterion;423
10.10.2;9.10.2 Bilinear Transformation Method by Using the Frequency Domain Criterion;425
10.11;9.11 Finite Impulse Response (FIR) Filter Design;428
10.11.1;9.11.1 Low-Pass FIR Filter Design;429
10.11.2;9.11.2 High-Pass, Band-Pass, and Band-Elimination FIR Filter Designs;431
10.11.3;9.11.3 Windows in Fourier Design;434
10.12;9.12 Digital Filter Realizations;437
10.12.1;9.12.1 Cascade Form of Realization;440
10.12.2;9.12.2 Parallel Form of Realization;440
10.12.3;9.12.3 All-Pass Filter Realization;441
10.12.4;9.12.4 Digital Filter Transposed Structures;441
10.12.5;9.12.5 FIR Filter Realizations;441
10.13;9.13 Summary;442
10.14;Problems;443
11;Analog Modulation;446
11.1;10.1 Introduction;446
11.2;10.2 Limiters and Mixers;448
11.2.1;10.2.1 Mixers;449
11.3;10.3 Linear Modulation;449
11.3.1;10.3.1 Double-Sideband (DSB) Modulation;449
11.3.2;10.3.2 Demodulation of DSB Signals;450
11.4;10.4 Frequency Multipliers and Dividers;452
11.5;10.5 Amplitude Modulation (AM);454
11.5.1;10.5.1 Percentage Modulation;455
11.5.2;10.5.2 Bandwidth Requirements;455
11.5.3;10.5.3 Power and Efficiency of an Amplitude Modulated Signal;456
11.5.4;10.5.4 Average Power Contained in an AM Signal;457
11.6;10.6 Generation of AM Signals;458
11.6.1;10.6.1 Square-Law Modulators;458
11.6.2;10.6.2 Switching Modulators;458
11.6.3;10.6.3 Balanced Modulators;459
11.7;10.7 Demodulation of AM Signals;460
11.7.1;10.7.1 Rectifier Detector;460
11.7.2;10.7.2 Coherent or a Synchronous Detector;460
11.7.3;10.7.3 Square-Law Detector;461
11.7.4;10.7.4 Envelope Detector;461
11.8;10.8 Asymmetric Sideband Signals;463
11.8.1;10.8.1 Single-Sideband Signals;463
11.8.2;10.8.2 Vestigial Sideband Modulated Signals;464
11.8.3;10.8.3 Demodulation of SSB and VSB Signals;465
11.8.4;10.8.4 Non-coherent Demodulation of SSB;466
11.8.5;10.8.5 Phase-Shift Modulators and Demodulators;466
11.9;10.9 Frequency Translation and Mixing;467
11.10;10.10 Superheterodyne AM Receiver;470
11.11;10.11 Angle Modulation;472
11.12;Chap10Sec31;473
11.12.1;10.12.1 Narrowband (NB) Angle Modulation;475
11.12.2;10.12.2 Generation of Angle Modulated Signals;476
11.13;10.12 Spectrum of an Angle Modulated Signal;477
11.13.1;10.12.1 Properties of Bessel Functions;478
11.13.2;10.12.2 Power Content in an Angle Modulated Signal;480
11.14;10.13 Demodulation of Angle Modulated Signals;482
11.14.1;10.13.1 Frequency Discriminators;482
11.14.2;10.13.2 Delay Lines as Differentiators;484
11.15;10.14 FM Receivers;485
11.15.1;10.14.1 Distortions;485
11.15.2;10.14.2 Pre-emphasis and De-emphasis;486
11.15.3;10.14.3 Distortions Caused by Multipath Effect;487
11.16;10.15 Frequency-Division Multiplexing (FDM);488
11.16.1;10.15.1 Quadrature Amplitude Modulation (QAM) or Quadrature Multiplexing (QM);489
11.16.2;10.15.2 FM Stereo Multiplexing and the FM Radio;490
11.17;10.16 Pulse Modulations;491
11.17.1;10.16.1 Pulse Amplitude Modulation (PAM);492
11.17.2;10.16.2 Problems with Pulse Modulations;492
11.17.3;10.16.3 Time-Division Multiplexing (TDM);494
11.18;10.17 Pulse Code Modulation (PCM);495
11.18.1;10.17.1 Quantization Process;495
11.18.2;10.17.2 More on Coding;497
11.18.3;10.17.3 Tradeoffs Between Channel Bandwidth and Signal-to-Quantization Noise Ratio;498
11.18.4;10.17.4 Digital Carrier Modulation;499
11.19;10.18 Summary;501
11.20;Problems;501
12;Appendix A: Matrix Algebra;505
12.1;A1 Matrix Notations;505
12.2;A.2 Elements of Matrix Algebra;506
12.2.1;A.2.1 Vector Norms;507
12.3;A.3 Solutions of Matrix Equations;508
12.3.1;A.3.1 Determinants;508
12.3.2;A.3.2 Cramer’s Rule;509
12.3.3;A.3.3 Rank of a Matrix;510
12.4;A.4 Inverses of Matrices and Their Use in Determining the Solutions of a Set of Equations;511
12.5;A.5 Eigenvalues and Eigenvectors;512
12.6;A.6 Singular Value Decomposition (SVD);516
12.7;A.7 Generalized Inverses of Matrices;517
12.8;A.8 Over- and Underdetermined System of Equations;518
12.8.1;A. 8.1 Least-Squares Solutions of Overdetermined System of Equations (m>n);518
12.8.2;A.8.2 Least-Squares Solution of Underdetermined System of Equations (



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.