E-Book, Englisch, 122 Seiten, eBook
Yin / Cui Spatio-Temporal Recommendation in Social Media
1. Auflage 2016
ISBN: 978-981-10-0748-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 122 Seiten, eBook
Reihe: SpringerBriefs in Computer Science
ISBN: 978-981-10-0748-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book covers the major fundamentals of and the latest research on next-generation spatio-temporal recommendation systems in social media. It begins by describing the emerging characteristics of social media in the era of mobile internet, and explores the limitations to be found in current recommender techniques. The book subsequently presents a series of latent-class user models to simulate users’ behaviors in decision-making processes, which effectively overcome the challenges arising from temporal dynamics of users’ behaviors, user interest drift over geographical regions, data sparsity and cold start. Based on these well designed user models, the book develops effective multi-dimensional index structures such as Metric-Tree, and proposes efficient top-k retrieval algorithms to accelerate the process of online recommendation and support real-time recommendation. In addition, it offers methodologies and techniques for evaluating both the effectiveness and efficiency of spatio-temporal recommendation systems in social media. The book will appeal to a broad readership, from researchers and developers to undergraduate and graduate students.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Acknowledgments;8
3;Contents;9
4;1 Introduction;12
4.1;1.1 Background;12
4.2;1.2 The Research Issues and Challenges;14
4.3;1.3 Overview of the Book;15
4.4;1.4 Literature and Research Review;17
4.4.1;1.4.1 Traditional Context-Aware Recommendation;17
4.4.2;1.4.2 Temporal Recommendation;18
4.4.3;1.4.3 Spatial Item Recommendation;19
4.4.4;1.4.4 Real-Time Recommendation;20
4.4.5;1.4.5 Online Recommendation Efficiency;21
4.5;References;23
5;2 Temporal Context-Aware Recommendation;27
5.1;2.1 Introduction;27
5.2;2.2 User Rating Behavior Modeling;30
5.2.1;2.2.1 Notations and Definitions;30
5.2.2;2.2.2 Temporal Context-Aware Mixture Model;32
5.2.3;2.2.3 Model Inference;34
5.2.4;2.2.4 Discussion About TCAM;36
5.2.5;2.2.5 Item-Weighting for TCAM;37
5.3;2.3 Temporal Recommendation;39
5.4;2.4 Experiments;40
5.4.1;2.4.1 Datasets;40
5.4.2;2.4.2 Comparisons;41
5.4.3;2.4.3 Evaluation Methodology;42
5.4.4;2.4.4 Recommendation Effectiveness;44
5.4.5;2.4.5 Temporal Context Influence Study;45
5.4.6;2.4.6 User Profile Analysis;47
5.5;2.5 Summary;48
5.6;References;48
6;3 Spatial Context-Aware Recommendation;50
6.1;3.1 Introduction;50
6.2;3.2 Location-Content-Aware Recommender System;53
6.2.1;3.2.1 Preliminary;53
6.2.2;3.2.2 Model Description;54
6.2.3;3.2.3 Model Inference;58
6.2.4;3.2.4 Online Recommendation;61
6.3;3.3 Experiments;61
6.3.1;3.3.1 Datasets;62
6.3.2;3.3.2 Comparative Approaches;63
6.3.3;3.3.3 Evaluation Methods;65
6.3.4;3.3.4 Recommendation Effectiveness;66
6.3.5;3.3.5 Local Preference Influence Study;68
6.3.6;3.3.6 Analysis of Latent Topic;70
6.4;3.4 Summary;71
6.5;References;71
7;4 Location-Based and Real-Time Recommendation;73
7.1;4.1 Introduction;74
7.1.1;4.1.1 Joint Modeling of User Check-In Behaviors;75
7.1.2;4.1.2 Real-Time POI Recommendation;76
7.2;4.2 Joint Modeling of User Check-In Activities;77
7.2.1;4.2.1 Preliminary;78
7.2.2;4.2.2 Model Structure;79
7.2.3;4.2.3 Generative Process;82
7.2.4;4.2.4 Model Inference;83
7.3;4.3 Online Learning for TRM;85
7.3.1;4.3.1 Feasibility Analysis;85
7.3.2;4.3.2 Online Learning Algorithm;86
7.4;4.4 POI Recommendation Using TRM;91
7.4.1;4.4.1 Fast Top-k Recommendation Framework;93
7.4.2;4.4.2 Addressing Cold-Start Problem;94
7.5;4.5 Experiments;94
7.5.1;4.5.1 Datasets;94
7.5.2;4.5.2 Comparative Approaches;96
7.5.3;4.5.3 Evaluation Methods;97
7.5.4;4.5.4 Recommendation Effectiveness;98
7.5.5;4.5.5 Impact of Different Factors;100
7.5.6;4.5.6 Test for Cold-Start Problem;102
7.5.7;4.5.7 Model Training Efficiency;103
7.6;4.6 Summary;104
7.7;References;104
8;5 Fast Online Recommendation;107
8.1;5.1 Introduction;107
8.1.1;5.1.1 Parallelization;108
8.1.2;5.1.2 Nearest-Neighbor Search;108
8.2;5.2 Metric Tree;110
8.2.1;5.2.1 Branch-and-Bound Algorithm;111
8.3;5.3 TA-Based Algorithm;113
8.3.1;5.3.1 Discussion;115
8.4;5.4 Attribute-Pruning Algorithm;116
8.5;5.5 Experiments;119
8.5.1;5.5.1 Experimental Results;119
8.6;5.6 Summary;121
8.7;References;122




