Buch, Englisch, 227 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 4853 g
Reihe: Data Analytics
Buch, Englisch, 227 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 4853 g
Reihe: Data Analytics
ISBN: 978-3-319-56211-7
Verlag: Springer International Publishing
This information will help researchers to understand how to analyze networked data with heterogeneous information networks. Common data mining tasks are explored, including similarity search, ranking, and recommendation. The book illustrates some prototypes which analyze networked data.
Professionals and academics working in data analytics, networks, machine learning, and data mining will find this content valuable. It is also suitable for advanced-level students in computer science who are interested in networking or pattern recognition.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Computerkommunikation & -vernetzung
Weitere Infos & Material
1. Introduction
1.1 Basic concepts and definitions
1.2 Comparisons with related concepts
1.3 Example Datasets of HIN
1.4 Why Heterogeneous Information Network Analysis
1.5 Organization of the book2. Summarization of the developments
2.1 Similarity search
2.2 Clustering
2.3 Classification
2.4 Link Prediction
2.5 Ranking
2.6 Recommendation2.7 Information fusion
2.8 Other applications
2.9 Application systems
3. Uniform relevance measure of heterogeneous objects
4. Path based Ranking
5. Ranking based Clustering6. Recommendation with heterogeneous information
7. Information fusion with heterogeneous network
8. Prototype system
9. Future research directions
10. Conclusion



