Zamora Saiz / Zúñiga-Rojas Geometric Invariant Theory, Holomorphic Vector Bundles and the Harder-Narasimhan Filtration
1. Auflage 2021
ISBN: 978-3-030-67829-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 127 Seiten
Reihe: Mathematics and Statistics
ISBN: 978-3-030-67829-6
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Unstable objects in moduli problems -- a result of the construction of moduli spaces -- get specific attention in this work. The notion of the Harder-Narasimhan filtration as a tool to handle them, and its relationship with GIT quotients, provide instigating new calculations in several problems. Applications include a survey of research results on correspondences between Harder-Narasimhan filtrations with the GIT picture and stratifications of the moduli space of Higgs bundles.
Graduate students and researchers who want to approach Geometric Invariant Theory in moduli constructions can greatly benefit from this reading, whose key prerequisites are general courses on algebraic geometry and differential geometry.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Preface.- Introduction.- Preliminaries.- Geometric Invariant Theory.- Moduli Space of Vector Bundles.- Unstability Correspondence.- Stratifications on the Moduli Space of Higgs Bundles.- References.- Index.