Zelezny / Riguzzi | Inductive Logic Programming | Buch | 978-3-642-38811-8 | sack.de

Buch, Englisch, 273 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g

Reihe: Lecture Notes in Artificial Intelligence

Zelezny / Riguzzi

Inductive Logic Programming

22nd International Conference, ILP 2012, Dubrovnik, Croatia, September 16-18,2012, Revised Selected papers
2013
ISBN: 978-3-642-38811-8
Verlag: Springer

22nd International Conference, ILP 2012, Dubrovnik, Croatia, September 16-18,2012, Revised Selected papers

Buch, Englisch, 273 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g

Reihe: Lecture Notes in Artificial Intelligence

ISBN: 978-3-642-38811-8
Verlag: Springer


This book constitutes the thoroughly refereed post-proceedings of the 22nd International Conference on Inductive Logic Programming, ILP 2012, held in Dubrovnik, Croatia, in September 2012.

The 18 revised full papers were carefully reviewed and selected from 41 submissions. The papers cover the following topics: propositionalization, logical foundations, implementations, probabilistic ILP, applications in robotics and biology, grammatical inference, spatial learning and graph-based learning.

Zelezny / Riguzzi Inductive Logic Programming jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


A Relational Approach to Tool-Use Learning in Robots.- A Refinement Operator for Inducing Threaded-Variable Clauses.- Propositionalisation of Continuous Attributes beyond Simple Aggregation.- Topic Models with Relational Features for Drug Design.- Pairwise Markov Logic.- Evaluating Inference Algorithms for the Prolog Factor Language.- Polynomial Time Pattern Matching Algorithm for Ordered Graph Patterns.- Fast Parameter Learning for Markov Logic Networks Using Bayes Nets.- Bounded Least General Generalization.- Itemset-Based Variable Construction in Multi-relational Supervised Learning.- A Declarative Modeling Language for Concept Learning in Description Logics.- Identifying Driver’s Cognitive Load Using Inductive Logic Programming.- Opening Doors: An Initial SRL Approach.- Probing the Space of Optimal Markov Logic Networks for Sequence Labeling.- What Kinds of Relational Features Are Useful for Statistical Learning?.- Learning Dishonesty.- Heuristic Inverse Subsumption in Full-Clausal Theories.- Learning Unordered Tree Contraction Patterns in Polynomial TimeA Relational Approach to Tool-Use Learning in Robots.- A Refinement Operator for Inducing Threaded-Variable Clauses.- Propositionalisation of Continuous Attributes beyond Simple Aggregation.- Topic Models with Relational Features for Drug Design.- Pairwise Markov Logic.- Evaluating Inference Algorithms for the Prolog Factor Language.- Polynomial Time Pattern Matching Algorithm for Ordered Graph Patterns.- Fast Parameter Learning for Markov Logic Networks Using Bayes Nets.- Bounded Least General Generalization.- Itemset-Based Variable Construction in Multi-relational Supervised Learning.- A Declarative Modeling Language for Concept Learning in Description Logics.- Identifying Driver’s Cognitive Load Using Inductive Logic Programming.- Opening Doors: An Initial SRL Approach.- Probing the Space of Optimal Markov Logic Networks for Sequence Labeling.- What Kinds of Relational Features Are Useful for StatisticalLearning?.-Learning Dishonesty.-Heuristic Inverse Subsumption in Full-Clausal Theories.-Learning Unordered Tree Contraction Patterns in Polynomial Time.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.