Zhang / Roosmalen | More than Moore | E-Book | www.sack.de
E-Book

E-Book, Englisch, 332 Seiten

Zhang / Roosmalen More than Moore

Creating High Value Micro/Nanoelectronics Systems
1. Auflage 2010
ISBN: 978-0-387-75593-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Creating High Value Micro/Nanoelectronics Systems

E-Book, Englisch, 332 Seiten

ISBN: 978-0-387-75593-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



In the past decades, the mainstream of microelectronics progression was mainly powered by Moore's law focusing on IC miniaturization down to nano scale. However, there is a fast increasing need for 'More than Moore' (MtM) products and technology that are based upon or derived from silicon technologies, but do not simply scale with Moore's law. This book provides new vision, strategy and guidance for the future technology and business development of micro/nanoelectronics.

Zhang / Roosmalen More than Moore jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;6
3;Contributors;8
4;Chapter 1;11
4.1;The Changing Landscape of Micro/Nanoelectronics;11
4.1.1;1.1 Introduction;11
4.1.2;1.2 Technology Evolution;13
4.1.2.1;1.2.1 More Moore (MM);13
4.1.2.2;1.2.2 More than Moore (MtM);16
4.1.2.3;1.2.3 Beyond CMOS;21
4.1.2.3.1;New State Variables;22
4.1.2.3.2;Information Transfer;22
4.1.2.3.3;Heat Transfer Management;23
4.1.2.4;1.2.4 Systems Architecture and Design;26
4.1.2.4.1;Design for Heterogeneous System;26
4.1.2.4.2;Design for Manufacturability;27
4.1.2.4.3;Design for Reliability;27
4.1.2.4.4;Design for Testability;28
4.1.2.5;1.2.5 Software;28
4.1.2.6;1.2.6 Heterogeneous Integration and Packaging;30
4.1.3;1.3 Business Development Trends;33
4.1.3.1;Economic Scale;33
4.1.3.2;Cost for Operation;33
4.1.3.3;Devirtualization;34
4.1.3.4;Specialization;34
4.1.3.5;Advanced CMOS Manufacturing Has Become a Commodity;35
4.1.3.6;System Knowledge;36
4.1.3.7;Function Integration;36
4.1.3.8;Fablite and Fabless;37
4.1.3.9;Ecosystems;37
4.1.4;1.4 Making it Happen;37
4.1.5;1.5 Conclusions;39
4.2;References;40
5;Chapter 2;42
5.1;Smart Integrated Systems: From Components to Products;42
5.1.1;2.1 Introduction;43
5.1.2;2.2 State of Technology;44
5.1.2.1;2.2.1 Automotive;44
5.1.2.2;2.2.2 Aeronautics;46
5.1.2.3;2.2.3 Information and Telecommunication;46
5.1.2.4;2.2.4 Medical Technologies;47
5.1.2.5;2.2.5 RFID;49
5.1.3;2.3 Future Trends and Application Examples;51
5.1.3.1;2.3.1 Automotive;51
5.1.3.1.1;2.3.1.2 Future Trends;53
5.1.3.2;2.3.2 Aeronautics;54
5.1.3.2.1;2.3.2.2 Future Trends;56
5.1.3.3;2.3.3 Information and Telecommunication;58
5.1.3.3.1;2.3.3.2 Future Trends;59
5.1.3.4;2.3.4 Medical Technologies;60
5.1.3.4.1;2.3.4.1 Application Example: Integration Aspects of a Polymer-Based SPR Biosensor with Active Micro-optical and Micro-fluidic ;61
5.1.3.4.2;2.3.4.2 Future Trends;62
5.1.3.5;2.3.5 RFID;64
5.1.3.5.1;2.3.5.1 Application Example: Smart Active ID Label for Transport Monitoringby D. Reuter and A. Bertz, Chemnitz University of ;65
5.1.3.5.2;2.3.5.2 Future Trends;66
5.1.4;2.4 Cross-Cutting Issues;66
5.1.5;2.5 Conclusions;70
5.2;References;71
6;Chapter 3;72
6.1;RF Technologies and Systems;72
6.1.1;3.1 Introduction;72
6.1.2;3.2 Multilayer Thin-Film Technologies;74
6.1.2.1;3.2.1 Thin-Film Technology for Integrated Passives Devices;74
6.1.2.2;3.2.2 “Above-IC” RF-SOC;77
6.1.3;3.3 RF-MEMS Technology;78
6.1.3.1;3.3.1 RF-MEMS Switches;79
6.1.3.2;3.3.2 FBAR Resonators;80
6.1.3.3;3.3.3 RF-MEMS Packaging and Reliability;81
6.1.4;3.4 Using the Third Dimension;82
6.1.4.1;3.4.1 Why Moving Toward the Third Dimension;83
6.1.4.2;3.4.2 3D Systems in a Package for Highly Miniaturized Systems;83
6.1.4.3;3.4.3 Packaging Technologies up to Millimeter-Wave Integration;85
6.1.5;3.5 Further Trends;85
6.1.5.1;3.5.1 Wafer Reconstitution Techniques;86
6.1.5.2;3.5.2 3D Integration Using Ultra-Thin Chip Stacking;87
6.1.6;3.6 Concluding Remarks;90
6.2;References;91
7;Chapter 4;94
7.1;High Voltage and Power;94
7.1.1;4.1 Introduction;94
7.1.2;4.2 SSL Technology;96
7.1.2.1;4.2.1 General Lighting Technology;96
7.1.2.2;4.2.2 New Technology;96
7.1.2.3;4.2.3 Fluorescent Lamps and Driving Methodology;98
7.1.2.4;4.2.4 IC for the Fluorescent Lamps;101
7.1.2.5;4.2.5 LED Lighting;103
7.1.2.6;4.2.6 IC for LED Driving;104
7.1.3;4.3 Automotive IC Technology;107
7.1.3.1;4.3.1 Introduction and General Automotive Survey;107
7.1.3.2;4.3.2 Engine Evolution: Major Trends;109
7.1.3.2.1;4.3.2.1 Gasoline Engine;109
7.1.3.2.2;4.3.2.2 Diesel Engine;109
7.1.3.2.3;4.3.2.3 Hybrid Cars;110
7.1.3.2.4;4.3.2.4 Engine Auxiliaries;110
7.1.3.3;4.3.3 High-Voltage and High-Power Silicon Technology;111
7.1.4;4.4 Research Subjects;114
7.1.5;4.5 Energy and Efficiency [3];114
7.1.5.1;4.5.1 Energy Generation;114
7.1.5.2;4.5.2 Energy Efficiency;115
7.1.5.3;4.5.3 Power for Mobile Communication;116
7.2;References;116
8;Chapter 5;117
8.1;Sensors and Actuators on CMOS Platforms;117
8.1.1;5.1 Introduction;117
8.1.2;5.2 Sensing Fundamentals;119
8.1.2.1;5.2.1 Piezoelectric Sensing;122
8.1.2.2;5.2.2 Piezoresistive Sensing;123
8.1.2.3;5.2.3 Capacitive Sensing;124
8.1.2.4;5.2.4 Thermal Sensing;127
8.1.3;5.3 Actuation Fundamentals;130
8.1.3.1;5.3.1 Electrostatic Actuators;131
8.1.3.1.1;5.3.1.1 Parallel Plate Actuator;131
8.1.3.1.2;5.3.1.2 Linear Surface Drive;132
8.1.3.1.3;5.3.1.3 Comb Drive;133
8.1.3.2;5.3.2 Piezoelectric Actuators;134
8.1.3.3;5.3.3 Thermal Actuators;134
8.1.3.4;5.3.4 Electromagnetic Actuators;136
8.1.4;5.4 S&A Applications and Products;139
8.1.4.1;5.4.1 Micromachined Sensors in the Automotive Market;140
8.1.4.2;5.4.2 Microfabricated Actuators in the Consumer Market;141
8.1.4.3;5.4.3 “The MEMS Consumerization Wave”;143
8.1.4.3.1;5.4.3.1 Hard-Disk Drive Free-Fall Protection;143
8.1.4.3.2;5.4.3.2 Mobile Phones and Portable Multimedia Players;144
8.1.4.3.3;5.4.3.3 Microfabricated Accelerometers in Game Consoles;144
8.1.4.3.4;5.4.3.4 Sensors for Optical Image Stabilization;145
8.1.4.3.5;5.4.3.5 Pedestrian Navigation for Location-Based Services;145
8.1.4.4;5.4.4 The S&A Market: Quo Vadis?;146
8.1.5;5.5 CMOS Technology for S&As;148
8.1.5.1;5.5.1 Materials and Processes;149
8.1.5.1.1;5.5.1.1 Specific Materials Used in S&A Applications;151
8.1.5.1.2;5.5.1.2 Specific MEMS Processes for S&A Applications;153
8.1.5.2;5.5.2 Monolithic CMOS/S&A Technology;156
8.1.5.2.1;5.5.2.1 Pure CMOS S&A Technology;156
8.1.5.2.2;5.5.2.2 Pre-CMOS S&A Technology;157
8.1.5.2.3;5.5.2.3 Intermediate-CMOS S&A Technology;158
8.1.5.2.4;5.5.2.4 Post-CMOS S&A Technology;159
8.1.5.3;5.5.3 Hybrid CMOS/S&A Integration Technology;159
8.1.5.3.1;5.5.3.1 Wafer-Level Stacking Technology;160
8.1.5.3.2;5.5.3.2 Wafer-Level Device-Transfer Technology;161
8.1.5.3.3;5.5.3.3 Die-To-Die/Wafer Flip-Chip Integration;163
8.1.5.4;5.5.4 Design Tools;164
8.1.6;5.6 Packaging, Assembly, and Testing of S&As for Large-Volume Production;165
8.1.6.1;5.6.1 Packaging: History, Current Technologies, and Trends;166
8.1.6.2;5.6.2 Packaging of the LIS3L02AL Micromachined Accelerometer: A Case Study;169
8.1.6.3;5.6.3 Production Testing;172
8.1.6.4;5.6.4 Next-Generation Challenges;173
8.1.7;5.7 Nanostructures for S&As;173
8.1.8;5.8 Outlook and Summary;176
8.2;References;177
9;Chapter 6;186
9.1;Biochips;186
9.1.1;6.1 Introduction;186
9.1.2;6.2 General Architecture of Microsystem for Biology and Chemistry;188
9.1.3;6.3 Microfluidics;189
9.1.3.1;6.3.1 Continuous Flow and Monophasic Microfluidics;190
9.1.3.2;6.3.2 Digital Microfluidics;192
9.1.3.3;6.3.3 Diphasic Microfluidics in Microchannels;193
9.1.4;6.4 Embedded Functions;194
9.1.4.1;6.4.1 Sample Preparation;194
9.1.4.2;6.4.2 Mechanical Filtering;194
9.1.4.3;6.4.3 Active Filter;195
9.1.4.4;6.4.4 Example of Microfluidic System for Extracting Nucleic Acids for DNA and RNA Analysis;197
9.1.4.5;6.4.5 Liquid-Liquid Extraction;197
9.1.4.6;6.4.6 Separation on Solid Phase;199
9.1.4.7;6.4.7 Magnetic Particles;200
9.1.4.8;6.4.8 Polymerase Chain Reaction;201
9.1.4.9;6.4.9 Transduction;203
9.1.4.10;6.4.10 Technological Aspect;205
9.1.5;6.5 Conclusion;206
9.2;References;206
10;Chapter 7;210
10.1;Optoelectronics;210
10.1.1;7.1 Introduction;210
10.1.2;7.2 Optoelectronics Devices;212
10.1.2.1;7.2.1 III–V semiconductor Materials for Optoelectronic Devices;212
10.1.2.2;7.2.2 Quantum Confined Effect in Low-Dimensional Semiconductor Structures;214
10.1.2.3;7.2.3 LEDs and OLEDs Basic Concept;216
10.1.2.4;7.2.4 OLEDs Technology;218
10.1.2.5;7.2.5 Research and Development of LEDs on Graded Buffer;220
10.1.2.5.1;7.2.5.1 LED Simulation;220
10.1.2.5.2;7.2.5.2 Growth and Characterization the LED Structure;222
10.1.2.6;7.2.6 LEDs and OLEDs Recent Development and Trends;227
10.1.2.7;7.2.7 Photodetectors for Optical Communications;229
10.1.2.7.1;7.2.7.1 Photodetectors Basic Concept;229
10.1.2.8;7.2.8 RCE Photodetectors;231
10.1.2.8.1;7.2.8.1 Design of RCE Photodetectors;231
10.1.2.8.2;7.2.8.2 Semiconductor Bragg Reflectors for 855 and 1300 nm Wavelength Ranges;231
10.1.2.8.3;7.2.8.3 Tunable MQW RCE Photodetector Design and Characterization;234
10.1.2.9;7.2.9 Design and Characterization of Separated Absorption, Charge, and Multiplication (SACM) InGaAs/InGaAsP/InP APD Structure;236
10.1.2.10;7.2.10 Recent Developments in Optical Communications;238
10.1.3;7.3 Silicon Photonics;239
10.1.3.1;7.3.1 Silicon-Photonic Circuits;240
10.1.3.2;7.3.2 Planar Silicon Waveguides;241
10.1.3.3;7.3.3 Moore’s Law for Photonics and Beyond;242
10.2;References;243
11;Chapter 8;246
11.1;Semiconductor Image Sensing;246
11.1.1;8.1 Introduction;247
11.1.2;8.2 Fundamentals of Semiconductor Image Sensing;248
11.1.2.1;8.2.1 Interaction of Light and Semiconductor;248
11.1.2.2;8.2.2 Quantum Efficiency;248
11.1.2.3;8.2.3 Temperature Effects: Dark Current;250
11.1.2.4;8.2.4 Photosensor Principles: Photodiode and CCD;251
11.1.3;8.3 Semiconductor Technology for Imaging;252
11.1.3.1;8.3.1 Silicon Sensors;252
11.1.4;8.4 Examples and Applications of Imagers;256
11.1.4.1;8.4.1 Electronic Imaging in the Visible Spectrum;256
11.1.4.1.1;8.4.1.1 Challenges and Opportunities;257
11.1.4.1.2;8.4.1.2 Single-Chip Digital Low-Power Camera;259
11.1.4.1.3;8.4.1.3 High-Sensitivity Electronic Imaging, Single-Chip Digital Low-Power Camera;260
11.1.4.1.4;8.4.1.4 Color Imaging;265
11.1.4.1.5;8.4.1.5 High-Speed Image Sensing;266
11.1.4.1.6;8.4.1.6 Optical Time-of-Flight 3D Cameras;268
11.1.4.2;8.4.2 Beyond the Visible Spectrum;269
11.1.4.2.1;8.4.2.1 Challenges and Opportunities;270
11.1.4.2.2;8.4.2.2 X-ray Imaging;270
11.1.4.2.2.1;Current Digital X-ray Image Sensors;271
11.1.4.2.2.2;New Image Sensor Concepts;271
11.1.4.2.3;8.4.2.3 Infrared Image Sensors;272
11.1.4.2.3.1;Infrared Detector Development;273
11.1.4.2.3.2;Focus on Microbolometer Technology;275
11.1.4.2.3.3;Focus on MCT;277
11.1.4.2.4;8.4.2.4 Terahertz Image Sensing: New Concepts;279
11.1.5;8.5 Outlook: The Future of Semiconductor Image Sensing;281
11.2;References;282
12;Chapter 9;286
12.1;Heterogeneous Integration: Building the Foundation for Innovative Products;286
12.1.1;9.1 Introduction;287
12.1.2;9.2 Physical Package Characterization, Lifetime Modeling, and Design for Reliability for Heterogeneous System Integration;290
12.1.3;9.3 Wafer-Level Integration;290
12.1.3.1;9.3.1 Integrated Passives;291
12.1.3.2;9.3.2 Extension of Redistribution Layers: Thin-Chip Integration;294
12.1.3.3;9.3.3 Functional Layer Technology;296
12.1.4;9.4 Module Integration Technologies;297
12.1.4.1;9.4.1 Embedding of Passive Components;298
12.1.4.2;9.4.2 Chip-in-Polymer;299
12.1.4.3;9.4.3 Chip Embedding into Flexible Substrates;300
12.1.4.4;9.4.4 Functional Packaging;301
12.1.4.5;9.4.5 Integration of Biological Functionalities;302
12.1.5;9.5 3D Integration;303
12.1.5.1;9.5.1 Package Stacking;303
12.1.5.2;9.5.2 Embedding of Active and/or Passive Devices;306
12.1.5.3;9.5.3 Stacking Without Through-Silicon Vias;306
12.1.5.4;9.5.4 Stacking with Through-Silicon Vias;307
12.1.6;9.6 Conclusion;309
12.2;References;310
13;Chapter 10;311
13.1;System-Level Design;311
13.1.1;10.1 Introduction;311
13.1.2;10.2 Background;312
13.1.2.1;10.2.1 Diversity;313
13.1.2.2;10.2.2 System Design Goals;314
13.1.2.2.1;10.2.2.1 Application Example;314
13.1.2.3;10.2.3 The Design Flow;315
13.1.2.3.1;10.2.3.1 The Hell of Nanophysics;315
13.1.2.3.2;10.2.3.2 More than Moore;316
13.1.2.4;10.2.4 The State-of-the-Art Technology;316
13.1.2.4.1;10.2.4.1 Current Trends in Microelectronics;318
13.1.2.4.2;10.2.4.2 Digital Design;318
13.1.2.4.2.1;Design and Implementation;319
13.1.2.4.2.2;Functional Verification;319
13.1.2.4.2.3;Conclusion;320
13.1.2.4.3;10.2.4.3 Analogue Design;321
13.1.2.4.4;10.2.4.4 System Design;322
13.1.2.4.5;10.2.4.5 Productivity Gap;323
13.1.2.5;10.2.5 Research Subjects/Future Trends;324
13.1.2.5.1;10.2.5.1 Analogue Circuits in Deep-Submicron and Nanometer CMOS;325
13.1.2.5.2;10.2.5.2 Layout and Modelling;326
13.1.2.5.3;10.2.5.3 Digital Design in Deep-Submicron CMOS;327
13.1.2.5.4;10.2.5.4 Executable Specifications;327
13.1.2.5.5;10.2.5.5 System Simulation;328
13.1.2.5.6;10.2.5.6 Finite Element Method;329
13.1.2.5.7;10.2.5.7 Thermal Simulators;329
13.1.2.5.8;10.2.5.8 Mechanical Simulators;331
13.1.2.5.9;10.2.5.9 Domain Decomposition;331
13.1.2.5.10;10.2.5.10 Time Domain Simulations;331
13.1.2.5.11;10.2.5.11 Error Propagation, Sensitivity Analysis;331
13.1.2.5.12;10.2.5.12 Temperature Analysis of Strongly Coupled Problems;332
13.1.2.5.13;10.2.5.13 Modelling;332
13.1.2.5.14;10.2.5.14 Methodology;332
13.1.2.5.15;10.2.5.15 Interaction Across Boundaries;333
13.1.2.5.16;10.2.5.16 Design Targets;334
13.1.2.5.17;10.2.5.17 Interaction with Equipment;335
13.1.2.6;10.2.6 Conclusions;335
13.2;Underlying Literature;336
14;Index;337



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.