Zhang / Yan / Lin | Artificial Intelligence Security and Privacy | Buch | 978-981-961147-8 | sack.de

Buch, Englisch, Band 15399, 182 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g

Reihe: Lecture Notes in Computer Science

Zhang / Yan / Lin

Artificial Intelligence Security and Privacy

Second International Conference, AIS&P 2024, Guangzhou, China, December 6-7, 2024, Proceedings
Erscheinungsjahr 2025
ISBN: 978-981-961147-8
Verlag: Springer Nature Singapore

Second International Conference, AIS&P 2024, Guangzhou, China, December 6-7, 2024, Proceedings

Buch, Englisch, Band 15399, 182 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-961147-8
Verlag: Springer Nature Singapore


This book constitutes the refereed proceedings of the Second International Conference on Artificial Intelligence Security and Privacy, AIS&P 2024, held in Guangzhou, China, during December 6-7, 2024.

The 14 full papers included in this book were carefully reviewed and selected from 47 submissions. The papers help to researchers to exchange latest research progress in all areas such as artificial intelligence, security and privacy, and their applications.

Zhang / Yan / Lin Artificial Intelligence Security and Privacy jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- BadHAR: Backdoor Attacks in Federated Human Activity Recognition Systems.
.- Fully Automated Generation Mechanism of Rootfs for Specified Operating Systems under Linux.
.- Anti-Side-Channel Attack Mechanisms in Blockchain Payment Channels.
.- F2L: A Lightweight Focus Layer against Backdoor Attack in Federated Learning.
.- Intelligent backpack based on ireless mobile technology.
.- Tourism Industry Upgrading and Public Opinion Prevention Methods Based on BERTopic: A Case Study of Hotel Management.
.- Privacy-Preserving Covert Channels in VoLTE via Inter-Frame Delay Modulation.
.- Enhancing Adversarial Robustness in Object Detection via Multi-Task Learning and Class-Aware Adversarial Training.
.- FedHKD: A Hierarchical Federated Learning Approach Integrating  lustering and Knowledge Distillation for Non-IID Data.
.- Application of Ensemble Learning Based on High-Dimensional Features in Financial Big Data.
.- Collaborative Framework for Dynamic Knowledge Updating and Transparent Reasoning with Large Language Models.
.- Zero-Shot Dense Retrieval based on Query Expansion.
.- Lightweight Attention-CycleGAN for Nighttime-Daytime Image ransformation.
.- Generative Image Steganography Based on Latent Space Vector Coding and Diffusion Model.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.