E-Book, Englisch, 354 Seiten
Zhong / He / Ai Dedicated Mobile Communications for High-speed Railway
1. Auflage 2018
ISBN: 978-3-662-54860-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 354 Seiten
Reihe: Advances in High-speed Rail Technology
ISBN: 978-3-662-54860-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book addresses the fundamental theory and key technologies of narrowband and broadband mobile communication systems specifically for railways. It describes novel relaying schemes that meet the different design criteria for railways and discusses the applications of signal classification techniques as well as offline resource scheduling as a way of advancing rail practice. Further, it introduces Novel Long Term Evolution for Railway (LTE-R) network architecture, the Quality of Service (QoS) requirement of LTE-R and its performance evaluation and discusses in detail security technologies for rail-dedicated mobile communication systems. The advanced research findings presented in the book are all based on high-speed railway measurement data, which offer insights into the propagation mechanisms and corresponding modeling theory and approaches in unique railway scenarios.It is a valuable resource for researchers, engineers and graduate students in the fields of rail traffic systems, telecommunication and information systems.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;1 Review of the Development of Dedicated Mobile Communications for High-Speed Railway;11
2.1;1.1 Railway Development in China;11
2.2;1.2 High-Speed Railway Development in the World;13
2.2.1;1.2.1 High-Speed Railway Development in China;15
2.3;1.3 The Active Role of Mobile Communications for Railway;18
2.4;1.4 GSM for Railway;19
2.4.1;1.4.1 The Development of GSM-R;20
2.4.1.1;1.4.1.1 The Standard Formulation Stage;20
2.4.1.2;1.4.1.2 The Experimental Verification Stage;20
2.4.1.3;1.4.1.3 The Project Implementation Stage;21
2.4.2;1.4.2 GSM-R Key Technology and Engineering Measures;21
2.4.2.1;1.4.2.1 GSM-R Wireless Network;21
2.4.2.1.1;The Main Differences Between GSM-R and GSM Wireless Networks;21
2.4.2.1.2;GSM-R Wireless Network Reliability;22
2.4.2.2;1.4.2.2 GSM-R Core Network;22
2.4.2.2.1;Equipment Protection Technology;22
2.4.2.2.2;Network Protection Technology;22
2.4.2.3;1.4.2.3 GSM-R Matching Equipment Technology;23
2.4.2.4;1.4.2.4 GSM-R Project Implementation;23
2.4.2.5;1.4.2.5 GSM-R Business and Implementation;23
2.5;1.5 Next-Generation Mobile Communication System for Railway;24
2.6;References;27
3;2 Key Issues for GSM-R and LTE-R;28
3.1;2.1 GSM-R Architecture;28
3.1.1;2.1.1 GSM-R Network Composition;28
3.1.2;2.1.2 Mobile Switching Subsystem;28
3.1.3;2.1.3 Mobile Intelligent Network Subsystem;30
3.1.4;2.1.4 General Packet Radio Service (GPRS) Subsystem;31
3.1.5;2.1.5 Base Station Subsystem;32
3.1.6;2.1.6 Operation and Support Subsystem (OSS);33
3.1.7;2.1.7 Terminal;34
3.2;2.2 GSM-R Network Hierarchical Structure;34
3.2.1;2.2.1 Mobile Switching Network;34
3.2.2;2.2.2 Intelligent Network;35
3.2.3;2.2.3 General Packet Radio Service Network;35
3.3;2.3 LTE-R Architecture;36
3.4;2.4 Key Technologies for GSM-R;46
3.5;2.5 Key Technologeis for LTE-R;51
3.5.1;2.5.1 The Application Requirements of the Next-Generation Railway Mobile Communication System;53
3.5.2;2.5.2 The Technology System and Network Architecture of the Next-Generation Railway Mobile Communication System;54
3.5.3;2.5.3 Frequency and Bandwidth Requirements of the Next-Generation Railway Mobile Communication System;55
3.5.4;2.5.4 The Key Technology in the Next-Generation Railway Mobile Communication System;55
3.5.5;2.5.5 Hybrid Networking of GSM-R and the Next-Generation Mobile Communication System;59
3.5.6;2.5.6 The Evaluation and Optimization of High-Speed Railway Wireless Resource Management Mechanism;60
3.6;2.6 Summary;62
3.7;References;62
4;3 Radio Propagation and Wireless Channel for Railway Communications;65
4.1;3.1 High-Speed Railway Propagation Scenarios;65
4.1.1;3.1.1 High-Speed Railway Propagation Scenarios Definition;65
4.1.2;3.1.2 Propagation Scenarios of Wide-Sense Vehicle-to-X Communications;68
4.1.2.1;3.1.2.1 Deterministic Channel Model for WSV2X Channels;73
4.1.2.2;3.1.2.2 Stochastic Channel Models;74
4.1.2.3;3.1.2.3 Geometry-Based Stochastic Models;74
4.1.2.4;3.1.2.4 Summary and Selecting a Suitable Modeling Approach;74
4.2;3.2 High-Speed Railway Channel Measurements;76
4.2.1;3.2.1 Measurement Methods and System;76
4.2.2;3.2.2 Measurement Campaign;79
4.2.2.1;3.2.2.1 Channel-Sounder-Based Measurements;79
4.2.2.2;3.2.2.2 Railway-Network-Based Measurements;80
4.3;3.3 Narrowband Channel Characterization of High-Speed Railways;83
4.3.1;3.3.1 Path Loss;83
4.3.1.1;3.3.1.1 Path Loss Model;83
4.3.1.2;3.3.1.2 Validation;84
4.3.2;3.3.2 Shadow Fading;86
4.3.2.1;3.3.2.1 Standard Deviation;86
4.3.2.2;3.3.2.2 Autocorrelation Characteristics;86
4.3.2.3;3.3.2.3 Cross-Correlation Characteristics;88
4.3.2.4;3.3.2.4 Discussions;89
4.3.2.5;3.3.2.5 Model;90
4.3.2.6;3.3.2.6 Model Implementation;92
4.3.2.7;3.3.2.7 Model Validation;93
4.3.3;3.3.3 Small-Scale Fading;94
4.3.3.1;3.3.3.1 Fade Depth;95
4.3.3.2;3.3.3.2 Level Crossing Rate and Average Fade Duration;98
4.3.3.3;3.3.3.3 Amplitude Distribution of Small-Scale Fading;100
4.3.3.4;3.3.3.4 Envelope Autocovariance of Small-Scale Fading;104
4.3.3.5;3.3.3.5 Ricean K-Factor;105
4.4;3.4 Wideband Channel Characterization of High-Speed Railways;108
4.4.1;3.4.1 Delay Characteristics;108
4.4.1.1;3.4.1.1 Delay Parameter Definitions;108
4.4.1.2;3.4.1.2 Coherence Bandwidth;109
4.4.1.3;3.4.1.3 Current Investigations on Delay Characteristics;110
4.4.1.4;3.4.1.4 Future Research Directions;112
4.4.2;3.4.2 Doppler Effect;112
4.4.2.1;3.4.2.1 The Time-Varying Two-Path Channel Model;113
4.4.2.2;3.4.2.2 Frequency Dispersion;115
4.4.2.3;3.4.2.3 Stochastic Characteristic of Doppler Effect;116
4.4.3;3.4.3 Angular Characteristics;117
4.4.3.1;3.4.3.1 Angular Parameter Definitions and Estimations;117
4.4.3.2;3.4.3.2 Current Investigations on Angular Characteristics;120
4.4.3.3;3.4.3.3 Future Research Directions;122
4.5;3.5 Summary;124
4.6;References;124
5;4 Cooperation and Cognition for Railway Communications;132
5.1;4.1 Cooperation Scenarios;132
5.1.1;4.1.1 Improved Channel Reliability;136
5.1.2;4.1.2 Improved System Throughput;137
5.1.3;4.1.3 Seamless Service Provision;140
5.2;4.2 Key Techniques for Cooperation;140
5.2.1;4.2.1 Relay Protocol;140
5.2.1.1;4.2.1.1 Amplify and Forward;142
5.2.1.2;4.2.1.2 Decode and Forward;144
5.2.1.3;4.2.1.3 Compress-and-Forward Cooperation;148
5.2.1.4;4.2.1.4 Coded Cooperation;148
5.2.2;4.2.2 MIMO and Cooperative Communication;151
5.2.3;4.2.3 Distributed Space–Time Coding;154
5.2.4;4.2.4 Physical Layer Network Coding and Cooperative Communication;158
5.2.4.1;4.2.4.1 The Two-Way Relay Channels;159
5.2.4.2;4.2.4.2 The Multi-way Relay Channels;160
5.2.4.3;4.2.4.3 Physical Layer Network Coding;161
5.3;4.3 Signal Classification in Cognitive Radio;162
5.3.1;4.3.1 Spectrum Sensing;166
5.3.2;4.3.2 Automatic Modulation Classification;172
5.3.3;4.3.3 Specific Emitter Identification;179
5.4;4.4 Cooperation and Cognition for High-Speed Railway;183
5.4.1;4.4.1 Relay Selective Cooperation in Railway Network;185
5.4.2;4.4.2 A Cooperative Handover Scheme for High-Speed Railway;188
5.4.3;4.4.3 Cognition for High-Speed Railway;192
5.5;4.5 Summary;197
5.5.1;4.5.1 Cooperative Diversity in Wireless Sensor Networks;201
5.5.2;4.5.2 Cooperative Diversity in Cognitive Radio;201
5.5.3;4.5.3 Summary of Cognitive Radio;205
5.6;References;206
6;5 Resource Management for High-Speed Railway Mobile Communications;211
6.1;5.1 Introduction;211
6.2;5.2 Overview and Survey;213
6.2.1;5.2.1 Admission Control;213
6.2.2;5.2.2 Level-Based Admission Control;214
6.2.3;5.2.3 Handover-Based Admission Control;215
6.2.4;5.2.4 Priority-Based Admission Control;215
6.2.5;5.2.5 Resource Allocation;216
6.2.6;5.2.6 Interference-Aware Resource Allocation;217
6.2.7;5.2.7 QoS-Aware Resource Allocation;218
6.2.8;5.2.8 Cross-Layer Dynamic Resource Allocation;219
6.2.9;5.2.9 Power Control;220
6.3;5.3 Resource Allocation and Power Control;222
6.3.1;5.3.1 System Model;222
6.3.2;5.3.2 Time-Distance Mapping;223
6.3.3;5.3.3 BS-RS Link Capacity;224
6.3.4;5.3.4 Utility-Based Resource Allocation;224
6.3.5;5.3.5 Problem Formulation;225
6.3.6;5.3.6 PAT Problem;226
6.3.7;5.3.7 PAS Problem;227
6.3.8;5.3.8 Problem Transformation;229
6.3.9;5.3.9 The Greedy Algorithm;232
6.3.10;5.3.10 Numerical Results and Discussions;234
6.4;5.4 Dynamic Resource Management;241
6.4.1;5.4.1 System Model;241
6.4.2;5.4.2 Problem Formulation;244
6.4.3;5.4.3 Dynamic Resource Management Schemes;246
6.4.4;5.4.4 Lyapunov Drift-Plus-Penalty Approach;247
6.4.5;5.4.5 Dynamic Resource Management Algorithm;248
6.4.6;5.4.6 Dual Optimization Framework;251
6.4.7;5.4.7 Simulation Results;253
6.5;5.5 Challenges and Open Issues;257
6.5.1;5.5.1 Location-Aware Resource Management;258
6.5.2;5.5.2 Cross-Layer Based Resource Management;258
6.5.3;5.5.3 Energy-Efficient Resource Management;259
6.5.4;5.5.4 Robust Resource Management;259
6.5.5;5.5.5 Resource Management for 5G Communications;260
6.6;5.6 Summary;260
6.7;References;261
7;6 LTE-R Network;264
7.1;6.1 LTE-R Network Services;264
7.2;6.2 LTE-R Network Architecture;267
7.3;6.3 LTE-R Network Performance Evaluation;270
7.3.1;6.3.1 Queueing Theory;270
7.3.2;6.3.2 Petri Nets;271
7.3.3;6.3.3 Network Calculus;271
7.3.4;6.3.4 System Model;275
7.3.4.1;6.3.4.1 LTE-R Architecture for Train Control System;275
7.3.4.2;6.3.4.2 Stochastic Network Calculus;277
7.3.5;6.3.5 Stochastic Arrival Curve for Train Control Service;282
7.3.6;6.3.6 Stochastic Service Curve for HSR Fading Channel;283
7.3.6.1;6.3.6.1 Mobility Model;283
7.3.6.2;6.3.6.2 Data Rate Process;285
7.3.6.3;6.3.6.3 Stochastic Service Curve;287
7.3.7;6.3.7 Performance Evaluation;289
7.3.7.1;6.3.7.1 Derivation of Delay Bound;289
7.3.7.2;6.3.7.2 System Parameter;290
7.3.7.3;6.3.7.3 Numerical and Simulation Results;291
7.4;References;297
8;7 Security of Dedicated Mobile Communications for Railway;300
8.1;7.1 Security Threats of Mobile Communications for Railway;300
8.1.1;7.1.1 Security Threats;300
8.1.2;7.1.2 Security Issues in GSM-R;301
8.1.3;7.1.3 Problems Still Existing in GSM-R;305
8.2;7.2 Security Enhancement for GSM-R;308
8.2.1;7.2.1 Security Measures Taken by GSM-R System;308
8.2.2;7.2.2 Bidirectional Authentication;312
8.2.3;7.2.3 End-to-End Encryption;315
8.2.4;7.2.4 Anti SIM Card Clone;317
8.3;7.3 Security of Wireless Heterogeneous Networks for Railway;320
8.3.1;7.3.1 Fast Re-authentication in Hot Spots;321
8.3.2;7.3.2 Wlan and Cellular Authentication;328
8.3.3;7.3.3 Relay Security;330
8.3.4;7.3.4 Access Authentication for Mobile Trusted Computing;334
8.4;7.4 Future and Challenges;337
8.5;References;337
9;8 Channel Simulation Technologies for Railway Broadband Mobile Communication Systems;339
9.1;8.1 Simulation Approaches;339
9.2;8.2 Simulation Scenario for Railway;340
9.2.1;8.2.1 Scenario 1: Open Space SFN;340
9.2.2;8.2.2 Scenario 2: Tunnel Environment;341
9.2.3;8.2.3 Scenario 3: Open Space ENB to RP;342
9.2.4;8.2.4 Scenario 4: Public Network;342
9.3;8.3 Channel Model in Simulation;343
9.3.1;8.3.1 Single-Tap HST Channel Model;343
9.3.2;8.3.2 Two-Tap HST Channel Model;344
9.3.3;8.3.3 WINER Channel Model;346
9.4;8.4 Hardware-in-Loop Simulation Testbed;351
9.4.1;8.4.1 Architecture;351
9.4.2;8.4.2 HIL Simulation Results;352




