Zhu / Castiglione / Li | Algorithms and Architectures for Parallel Processing | Buch | 978-981-961547-6 | sack.de

Buch, Englisch, 342 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 546 g

Reihe: Lecture Notes in Computer Science

Zhu / Castiglione / Li

Algorithms and Architectures for Parallel Processing

24th International Conference, ICA3PP 2024, Macau, China, October 29-31, 2024, Proceedings, Part V
Erscheinungsjahr 2025
ISBN: 978-981-961547-6
Verlag: Springer Nature Singapore

24th International Conference, ICA3PP 2024, Macau, China, October 29-31, 2024, Proceedings, Part V

Buch, Englisch, 342 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 546 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-981-961547-6
Verlag: Springer Nature Singapore


The six-volume set, LNCS 15251-15256, constitutes the refereed proceedings of the 24th International Conference on Algorithms and Architectures for Parallel Processing, ICA3PP 2024, held in Macau, China, during October 29–31, 2024.

The 91 full papers, 35 short papers and 5 workshop papers included in these proceedings were carefully reviewed and selected from 265 submissions. They focus on the many dimensions of parallel algorithms and architectures, encompassing fundamental theoretical approaches, practical experimental projects, and commercial components and systems.

Zhu / Castiglione / Li Algorithms and Architectures for Parallel Processing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


An Enhanced Intrusion Detection Method Combined with Contrastive Federated Learning.- Black-Box Adversarial Attack Against Transformer-Based Object Detection Models in Vehicular Networks.- FedADDP: Privacy-Preserving Personalized Federated Learning with Adaptive Dimensional Differential Privacy.- DP-CLMI: Differentially Private Contrastive Learning against Membership Inference Attack.- DT-UPD: User Privacy Data Protection through Distribution Transformation in Unlearning Cloud Service.- Deduplication and Approximate Analytics for Encrypted IoT Data in Fog-assisted Cloud Storage.- Encrypted Malware Traffic Detection Via Time-Frequency Domain Analysis.- Behavior-Driven Encrypted Malware Detection with Robust Traffic Representation.- Optimizing Self-Training Sample Selection for Euphemism Detection in Special Scenarios.- Modal-Centric Insights into Multimodal Federated Learning for Smart Healthcare: A Survey.- Heterogeneous Graph Modeling for Resource-Aware Prediction of DRL Training Time.- A Comprehensive Review on Deep Learning System Testing.- CIGraph: Accelerating Graph Queries Over Database with Compressed Index.- Language-based Colorization with Sparse Attention and Multi-Scale Cross-Modal Semantic Alignment.- A Power Monitoring Framework of a Post-Quantum Cryptography Web Server.- A Lightweight Detection Scheme for Black-Hole Attacks and Gray-Hole Attacks in VANETs.- Federated Meta Continual Learning for Efficient and Autonomous Edge Inference.- Progressive Multiscale Attention Network for Diabetic Retinopathy.- FPIM: Fair and Privacy-Preserving Incentive Mechanism in Mobile Crowdsensing.- DRL-Based UAV Collaborative Task Offloading for Post-Disaster Scenarios.- Who is being impersonated? Deepfake Audio Detection and Impersonated Identification via Extraction of Id-specific Features.- Review of Incentive Mechanisms of Differential Privacy based Federated Learning Protocols: From the Economics and Game Theoretical Perspectives.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.