Zippel | Effective Polynomial Computation | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 241, 363 Seiten, eBook

Reihe: The Springer International Series in Engineering and Computer Science

Zippel Effective Polynomial Computation


1993
ISBN: 978-1-4615-3188-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 241, 363 Seiten, eBook

Reihe: The Springer International Series in Engineering and Computer Science

ISBN: 978-1-4615-3188-3
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



is an introduction to the algorithms of computer algebra. It discusses the basic algorithms for manipulating polynomials including factoring polynomials. These algorithms are discussed from both a theoretical and practical perspective. Those cases where theoretically optimal algorithms are inappropriate are discussed and the practical alternatives are explained.
provides much of the mathematical motivation of the algorithms discussed to help the reader appreciate the mathematical mechanisms underlying the algorithms, and so that the algorithms will not appear to be constructed out of whole cloth.
Preparatory to the discussion of algorithms for polynomials, the first third of this book discusses related issues in elementary number theory. These results are either used in later algorithms (e.g. the discussion of lattices and Diophantine approximation), or analogs of the number theoretic algorithms are used for polynomial problems (e.g. Euclidean algorithm and -adic numbers).
Among the unique features of is the detailed material on greatest common divisor and factoring algorithms for sparse multivariate polynomials. In addition, both deterministic and probabilistic algorithms for irreducibility testing of polynomials are discussed.
Zippel Effective Polynomial Computation jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1. Euclid's Algorithm. 2. Continued Fractions. 3. Diophantine Equations. 4. Lattice Techniques. 5. Arithmetic Functions. 6. Residue Rings. 7. Polynomial Arithmetic. 8. Polynomial GCD's: Classical Algorithms. 9. Polynomial Elimination. 10. Formal Power Series. 11. Bounds on Polynomials. 12. Zero Equivalence Testing. 13. Univariate Interpolation. 14. Multivariate Interpolation. 15. Polynomial GCD's: Interpolation Algorithms. 16. Hensel Algorithms. 17. Sparse Hensel Algorithms. 18. Factoring over Finite Fields. 19. Irreducibility of Polynomials. 20. Univariate Factorization. 21. Multivariate Factorization. List of Symbols. Bibliography. Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.