Buch, Englisch, 328 Seiten, Previously published in hardcover, Format (B × H): 170 mm x 244 mm, Gewicht: 608 g
Buch, Englisch, 328 Seiten, Previously published in hardcover, Format (B × H): 170 mm x 244 mm, Gewicht: 608 g
Reihe: Mathematics and Its Applications
ISBN: 978-90-481-4086-2
Verlag: Springer Netherlands
'Et moi,.• si j'avait su comment en revenir, One service mathematics has rendered the je n 'y serais point aile.' human race. It has put common sense back where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell 0. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics.'; 'One service logic has rendered com puter science.'; 'One service category theory has rendered mathematics.'. All arguably true. And all statements obtainable this way form part of the raison d'elre of this series.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Algebra Zahlentheorie
Weitere Infos & Material
1. Exploiting Sparsity.- 2. Storage Schemes.- 3. General Scheme for Linear Algebraic Problems.- 4. Pivotal Strategies for Gaussian Elimination.- 5. Use of Iterative Refinement in the GE Process.- 6. Implementation of the Algorithms.- 7. Solving Least Squares Problems by Augmentation.- 8. Sparse Matrix Technique for Ordinary Differential Equations.- 9. Condition Number Estimators in a Sparse Matrix Software.- 10. Parallel Direct Solvers.- 11 Parallel Orthomin for General Sparse Matrices.- 12. Orthogonalization Methods.- 13. Two Storage Schemes for Givens Plane Rotations.- 14. Pivotal Strategies for Givens Plane Rotations.- 15. Iterative Refinement after the Plane Rotations.- 16. Preconditioned Conjugate Gradients for Givens Plane Rotations.- References.- Author Index.