Zucchini / MacDonald / Langrock | Hidden Markov Models for Time Series | Buch | 978-1-032-17949-0 | sack.de

Buch, Englisch, 400 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 605 g

Reihe: Chapman & Hall/CRC Monographs on Statistics and Applied Probability

Zucchini / MacDonald / Langrock

Hidden Markov Models for Time Series

An Introduction Using R, Second Edition
2. Auflage 2021
ISBN: 978-1-032-17949-0
Verlag: Chapman and Hall/CRC

An Introduction Using R, Second Edition

Buch, Englisch, 400 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 605 g

Reihe: Chapman & Hall/CRC Monographs on Statistics and Applied Probability

ISBN: 978-1-032-17949-0
Verlag: Chapman and Hall/CRC


Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses.

After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations.

The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations.

Features

- Presents an accessible overview of HMMs

- Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology

- Includes numerous theoretical and programming exercises

- Provides most of the analysed data sets online

New to the second edition

- A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process

- New case studies on animal movement, rainfall occurrence and capture-recapture data

Zucchini / MacDonald / Langrock Hidden Markov Models for Time Series jetzt bestellen!

Weitere Infos & Material


Model structure, properties and methods, Preliminaries: mixtures and Markov chains, Hidden Markov models: definition and properties, Direct maximization of the likelihood, Estimation by the EM algorithm, Forecasting, decoding and state prediction, Model selection and checking, Bayesian inference for Poisson-HMMs, R packages, Extensions, Covariates and other extra dependencies, Continuous-valued state processes, Hidden semi-Markov models as HMMs, HMMs for longitudinal data, Applications, Epileptic seizures, Daily rainfall occurrence, Eruptions of the Old Faithful geyser, HMMs for animal movement, Wind direction at Koeberg, Models for financial series, Births at Edendale Hospital, Homicides and suicides in Cape Town, Animal behaviour model with feedback, Survival rates of Soay sheep, Examples of R code, The functions, Examples of code using the above functions, Some proofs Factorization needed for forward probabilities, Two results for backward probabilities, Conditional independence of Xt1 and XTt+1, References


Walter Zucchini, Iain K. MacDonald, Roland Langrock



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.