E-Book, Englisch, 225 Seiten, eBook
Abakumov / Baranov / Borichev Extended Abstracts Fall 2019
1. Auflage 2021
ISBN: 978-3-030-74417-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Spaces of Analytic Functions: Approximation, Interpolation, Sampling
E-Book, Englisch, 225 Seiten, eBook
Reihe: Research Perspectives CRM Barcelona
ISBN: 978-3-030-74417-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Foreword.- Editorial.- Comparison of Clark measures in several complex variables.- On spectrum of a class of Jacobi matrices on graph-trees and multiple orthogonal polynomials.- Geometric properties of reproducing kernels in Hilbert spaces of entire functions.- A new life of the classical Szegö formula.- De Branges canonical systems with finite logarithmic integral.- Rate of convergence of critical interfaces to SLE curves.- Toeplitz and Hankel operators on Bergman spaces.- Bounds for zeta and primes via Fourier analysis.- On zeros of solutions of a linear differential equation.- Extended abstract on Riesz bases of exponentials for convex polytopes with symmetric faces.- Remez-type inequalities and their applications.- Shift-Invariant Spaces of Entire Functions.- Describing Blaschke products by their critical points.- Two problems on homogenization in geometry.- Toeplitz operators between distinct abstract Hardyspaces.- Polynomial Hermite–Padé m-system and reconstruction of the values of algebraic functions.- Quantitative Szegö minimum problem for some non-Szegö measures.- Hausdorff dimension exceptional set estimates for projections, sections and intersections.- Generic boundary behaviour of Taylor series in Banach spaces of holomorphic functions.- Szegö-type ASD for “multiplicative Toeplitz” operators.- Around Uncertainty Principle.- Inner functions, completeness and spectra.- Schmidt subspaces of Hankel operators.- Maximum principle and comparison of singular numbers for composition operators.- Canonical systems in classes of compact operators.- S-Contours and Convergent Interpolation.- Special Conformal Mappings and Extremal Problems.