E-Book, Englisch, Band Volume 129, 348 Seiten
Reihe: Advances in Agronomy
Advances in Agronomy
1. Auflage 2015
ISBN: 978-0-12-802347-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, Band Volume 129, 348 Seiten
Reihe: Advances in Agronomy
ISBN: 978-0-12-802347-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Advances in Agronomy continues to be recognized as a leading reference and a first-rate source for the latest research in agronomy. As always, the subjects covered are varied and exemplary of the myriad of subject matter dealt with by this long-running serial. Six volumes are published yearly which ensures that authors' contributions are disseminated to the readership in a timely manner. - Timely and state-of-the-art reviews - Distinguished, well recognized authors - A venerable and iconic review series - Timely publication of submitted reviews
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Advances in AGRONOMY;2
3;Advances in Agronomy;3
4;Advances in AGRONOMY
;4
5;Copyrights
;5
6;Contents;6
7;Contributors;10
8;Preface;14
9;Advances in Host Plant and Rhizobium Genomics to Enhance Symbiotic Nitrogen Fixation in Grain Legumes;16
9.1;1. Introduction;18
9.2;2. Host Plant and Environmental Stress Factors Impacting SNF;24
9.2.1;2.1 Host–Rhizobium Physiological and Biochemical Factors;24
9.2.2;2.2 Mineral Nutrition of the Host Plant, High Nitrates in Soils, and Starter Nitrogen;25
9.2.3;2.3 Drought, Salinity, and Heat Stress;27
9.3;3. Genomics-led Intervention to Select for Promiscuous Germplasm;29
9.3.1;3.1 Selection Environment for Evaluating Germplasm and Breeding Populations for SNF;29
9.3.2;3.2 From Conventional to High-Throughput Assays to Phenotype N2-Fixing Traits;30
9.3.3;3.3 Genetic Variation and Traits Associated with SNF;32
9.3.3.1;3.3.1 Variability for SNF in Germplasm;32
9.3.3.2;3.3.2 Genotype, Environment, and Strain Interactions;40
9.3.3.3;3.3.3 Relationships of SNF with Agronomic Traits;41
9.3.4;3.4 Abiotic Stress and N2 Fixation;45
9.3.5;3.5 Identifying Promiscuous Germplasm for Use in Breeding;47
9.3.6;3.6 QTL Associated with SNF Traits;49
9.3.7;3.7 Cloning and Gene Expression Associated with SNF;58
9.3.7.1;3.7.1 Plant Genes and SNF;58
9.3.7.1.1;3.7.1.1 Model Legumes;58
9.3.7.1.2;3.7.1.2 Grain Legumes;62
9.3.7.2;3.7.2 Plant Genes Expression and SNF;63
9.3.7.2.1;3.7.2.1 Model Legumes;63
9.3.7.2.2;3.7.2.2 Grain Legumes;64
9.4;4. Genomics-led Intervention to Select for Effective Rhizobium Strains;67
9.4.1;4.1 Rhizobium Genetic Resources, Host Specificity, and Diversity;67
9.4.2;4.2 Host–Rhizobium Interaction and Competition with Indigenous Rhizobium Strains;69
9.4.3;4.3 Host (Wild Relatives)–Rhizobium Symbiosis to Identifying Stress Tolerant Rhizobium Strains;75
9.4.4;4.4 Harnessing Sequence Diversity among the Rhizobium Genomes to Enhance Host–Rhizobium Symbiosis;78
9.4.5;4.5 Rhizobial Endophytes in Host and Nonhost on Plant Growth and Development;85
9.5;5. Challenges and Opportunities to Combining High SNF Traits Into Improved Genetic Background;88
9.5.1;5.1 Abiotic Stress Tolerance and Host–Rhizobium Symbiosis: a Breeding Challenge;88
9.5.1.1;5.1.1 Plant–Rhizobium Interactions for Alleviating Abiotic stress(es);89
9.5.1.2;5.1.2 Mycorrhizal Fungi Alleviate Abiotic Stress in Plants;89
9.5.1.3;5.1.3 Selecting for Nitrogen Fixation Drought Tolerance in Breeding Programs;90
9.5.1.4;5.1.4 Overexpressing Trehalose-6-Phosphate Synthase Gene Improves Drought Tolerance and SNF;90
9.5.2;5.2 Delayed Leaf Senescence in Relation to Photosynthesis, Symbiosis, and Productivity;91
9.5.3;5.3 Selecting for High Nitrogen Fixation Ability into Improved Genetic Background;94
9.5.4;5.4 SNF Projects to Harness Host–Rhizobium Symbiosis;96
9.6;6. Metabolic Reconstruction and Modeling to Predicting SNF;98
9.6.1;6.1 Reconstructing Metabolic Network to SNF;98
9.6.2;6.2 Modeling to Predict Nitrogen Fixation;100
9.7;7. Perspectives;101
9.8;Acknowledgments;103
9.9;References;104
10;Climate Change: Implications for Stakeholders in Genetic Resources and Seed Sector;132
10.1;1. Introduction;134
10.1.1;1.1 Improved Seed: Major Contributor to Crop Yield Gains;136
10.2;2. Plant Genetic Resources;137
10.2.1;2.1 Conserving Crop Wild Relatives and Landraces;138
10.2.2;2.2 Gene Banks;139
10.2.3;2.3 Global Plan of Action;140
10.2.4;2.4 International Treaties/Conventions/Networks;142
10.2.5;2.5 International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA);142
10.2.6;2.6 Convention on Biological Diversity;143
10.2.7;2.7 Genetic Diversity Usage;144
10.2.8;2.8 Managing Pollination;145
10.2.9;2.9 Seed Systems;148
10.3;3. Breeding Strategies;149
10.3.1;3.1 Screening for Traits of Interest;149
10.3.2;3.2 Pre-Breeding Using Wide Crosses;152
10.3.3;3.3 Breeding Varieties for Adaptation in New Areas;153
10.3.4;3.4 Marker-Assisted Selection (MAS)—Breeding;154
10.3.5;3.5 Genomics/Proteomics/Metabolomics;155
10.3.6;3.6 Genetic Engineering;156
10.3.7;3.7 Participatory Plant Breeding;157
10.3.8;3.8 Resilient Crops and Systems;157
10.3.9;3.9 New Approaches;158
10.3.10;3.10 Public/Private Partnership;159
10.4;4. Environment for Quality Seed Production;161
10.4.1;4.1 Adjusting the Crop Calendar for Quality Seed Production;162
10.4.2;4.2 Strengthening Hybrid Seed Production;162
10.5;5. Strengthening Seed Supply Systems;163
10.5.1;5.1 Postharvest Management of Seed;164
10.5.2;5.2 Seed Enhancement Technologies in Formal Seed System;165
10.5.3;5.3 Seed Treatment Technologies;166
10.5.4;5.4 On-Farm Seed Priming;167
10.5.5;5.5 Integrating Informal and Formal Seed Supply Systems;168
10.6;6. Adaptation and Adoption;169
10.6.1;6.1 Adaptation;170
10.6.2;6.2 Adoption;171
10.7;7. Harmonizing Seed Testing and Certification;173
10.8;8. IPR Management;174
10.8.1;8.1 Harmony among Various IPRs and/or Organizations;175
10.8.2;8.2 Phytosanitary Measures and International Seed Health Initiatives;176
10.8.3;8.3 Facilitating Seed Trade, Managing Barriers, and Market Development;178
10.9;9. Role of Public and Private Seed Sectors and Investment;180
10.10;10. Conclusions;182
10.11;Acknowledgments;184
10.12;References;184
11;Weedy (Red) Rice: An Emerging Constraint to Global Rice Production;196
11.1;1. Introduction;197
11.2;2. Background;198
11.3;3. Biology of Weedy Rice;201
11.4;4. The Origin, Evolution and Seed Dormancy of Weedy Rice;204
11.5;5. Past, Present, and Future Distribution;210
11.5.1;5.1 Current Distribution;211
11.6;6. Management of Weedy Rice in DSR;214
11.7;7. Emerging Management Strategies;222
11.8;8. Future Research Needs;229
11.9;9. Conclusions;232
11.10;Acknowledgments;233
11.11;References;233
12;The Challenge of the Urine Patch for Managing Nitrogen in Grazed Pasture Systems;244
12.1;1. Introduction;245
12.2;2. The Urine Patch in Grazed Pasture Systems;247
12.2.1;2.1 Urine Composition;247
12.2.2;2.2 Urination Volume and Frequency;252
12.2.3;2.3 Urine Patch Area;252
12.2.4;2.4 Urine Patch N Loading Rate;253
12.2.5;2.5 Conditions in the Urine Patch;254
12.3;3. Nitrogen-Removal Processes in the Urine Patch;255
12.3.1;3.1 Ammonia Volatilization;255
12.3.1.1;3.1.1 The Process and Factors Affecting NH3 Volatilization;255
12.3.1.2;3.1.2 Typical N Losses and Management of NH3 Volatilization;256
12.3.2;3.2 Denitrification and Associated Processes;260
12.3.2.1;3.2.1 The Processes and Factors Affecting Denitrification;260
12.3.2.1.1;3.2.1.1 N and C Availability;261
12.3.2.1.2;3.2.1.2 pH, O2 Availability, and Moisture;261
12.3.2.1.3;3.2.1.3 Urine Composition;262
12.3.2.2;3.2.2 Typical N Losses and Management of Denitrification;262
12.3.2.2.1;3.2.2.1 Nitrification Inhibitors;267
12.3.2.2.2;3.2.2.2 Soil Additives;267
12.3.3;3.3 Nitrogen Leaching;268
12.3.3.1;3.3.1 The Process and Factors Affecting Leaching;268
12.3.3.1.1;3.3.1.1 Rate of Urine N Application;268
12.3.3.1.2;3.3.1.2 Deposition Time;270
12.3.3.1.3;3.3.1.3 Irrigation;270
12.3.3.2;3.3.2 Typical N Losses;271
12.3.3.2.1;3.3.2.1 Nitrate–N;271
12.3.3.2.2;3.3.2.2 Ammonium–N, Urea–N;271
12.3.3.2.3;3.3.2.3 Dissolved Organic N;274
12.3.3.3;3.3.3 Management of Leaching;274
12.3.4;3.4 Nitrogen Immobilization;275
12.3.4.1;3.4.1 The Process and Factors Affecting Immobilization;275
12.3.4.2;3.4.2 Typical N Removal and Management of Immobilization;276
12.3.5;3.5 Pasture Nitrogen Uptake;279
12.3.5.1;3.5.1 The Process and Factors Affecting N Uptake;279
12.3.5.1.1;3.5.1.1 Edge Effects;280
12.3.5.1.2;3.5.1.2 Urine Scorch;281
12.3.5.2;3.5.2 Typical Pasture N Uptake and Opportunities to Improve Uptake;281
12.3.5.2.1;3.5.2.1 Pasture Species;282
12.3.5.2.2;3.5.2.2 Process Inhibitors;282
12.3.5.2.3;3.5.2.3 Urine Spread;282
12.4;4. Scale Issues in Understanding the Effects of Urine Patches;283
12.4.1;4.1 Spatial Distribution of Urine Patches;283
12.4.1.1;4.1.1 Scaling to the Paddock Level;283
12.4.1.1.1;4.1.1.1 Estimating Paddock-Scale Urinary N Deposition;284
12.4.1.2;4.1.2 Scaling to the Farm Level;285
12.4.2;4.2 Modeling at the Paddock and Farm Scale;285
12.4.2.1;4.2.1 Paddock Scale;286
12.4.2.2;4.2.2 Farm Scale;286
12.5;5. Managing Urine Patch Nitrogen in the Farm System;287
12.5.1;5.1 Target: Soil;287
12.5.2;5.2 Target: Plant;287
12.5.3;5.3 Target: Animal;290
12.5.4;5.4 Target: Farm Management;291
12.6;6. Conclusions;291
12.7;Acknowledgments;295
12.8;References;295
13;Biologically Regulated Nutrient Supply Systems: Compost and Arbuscular Mycorrhizas—A Review;308
13.1;1. Introduction and Scope of Review;309
13.2;2. AMs: A Brief Overview;311
13.3;3. Review—Methods;313
13.4;4. Compost Effects on the Formation of AM;314
13.4.1;4.1 AM Colonization and Compost—Conclusions;318
13.5;5. Compost Effects on Propagules and Extraradical Growth of AMF;319
13.5.1;5.1 Compost Effects on Propagules and Extraradical Growth of AMF—Conclusions;321
13.6;6. Interactive Effects of Compost and AMF on Plant Growth and Nutrition;322
13.6.1;6.1 Plant Growth and Nutrition, AMF, and Compost—Conclusions;326
13.7;7. Interactive Effects of Compost and AMF on Soil Properties;326
13.7.1;7.1 Soil Structure, AMF, and Compost—Conclusions;329
13.8;8. Conclusions and Future Directions;329
13.9;Acknowledgments;330
13.10;References;331
14;INDEX;338




