E-Book, Englisch, 406 Seiten, Format (B × H): 152 mm x 229 mm
Advances in Imaging and Electron Physics
1. Auflage 2009
ISBN: 978-0-08-091216-5
Verlag: Academic Press
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Optics of Charged Particle Analyzers
E-Book, Englisch, 406 Seiten, Format (B × H): 152 mm x 229 mm
ISBN: 978-0-08-091216-5
Verlag: Academic Press
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Advances in Imaging and Electron Physics merges two long-running serials--Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy.
This series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
* Contributions from leading international scholars and industry experts
* Discusses hot topic areas and presents current and future research trends
* Invaluable reference and guide for physicists, engineers and mathematicians
Fachgebiete
Weitere Infos & Material
1;Front Cover;1
2;Advances in Imaging and Electron Physics;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;Preface;14
7;Foreword;16
8;Future Contributions;20
9;Chapter 1: Charged Particles in Electromagnetic Fields;26
9.1;1.1. Electrostatic Fields;26
9.1.1;1.1.1. Electrostatic Field Strength and Electrostatic Potential;26
9.1.2;1.1.2. Electrostatic Fields in the Presence of Materials;27
9.1.3;1.1.3. Calculation of Electrostatic Fields;30
9.1.4;1.1.4. Common Types of Electrostatic Field Distributions;32
9.2;1.2. Magnetostatic Fields;36
9.2.1;1.2.1. Magnetostatic Fields and Magnetic Materials;36
9.2.2;1.2.2. Forming Magnetostatic Fields;40
9.2.3;1.2.3. Calculation of Magnetostatic Fields;43
9.2.4;1.2.4. Common Types of Magnetostatic Field Distributions;46
9.3;1.3. Charged Particle Motion in Electromagnetic Fields;48
9.3.1;1.3.1. General Relations;48
9.3.2;1.3.2. Scaling Laws for Charged Particle Motion in Static Fields;50
9.3.3;1.3.3. Symplectic Relation;52
10;Chapter 2: Language of Aberration Expansions in Charged Particle Optics;58
10.1;2.1. Aberration Expansions and Aberration Coefficients;58
10.2;2.2. Linear (Paraxial) Approximation;63
10.2.1;2.2.1. Geometric Terms of Paraxial Expansion;63
10.2.2;2.2.2. Description of Chromatically Inhomogeneous Charged Particle Beams;68
10.2.3;2.2.3. Paraxial Symplectic Relations;73
10.2.4;2.2.4. Transfer Matrices;76
10.2.5;2.2.5. Paraxial Properties of Symmetric Systems;78
10.2.6;2.2.6. General Integral Relation for the Rigidity Dispersion in Static Electromagnetic Fields;81
10.3;2.3. Image Aberrations;86
10.3.1;2.3.1. Aberrations in Systems with Two Planes of Symmetry;87
10.3.2;2.3.2. Aberrations in Systems with One Plane of Symmetry;92
10.3.3;2.3.3. Aberrations and Resolving Power;95
10.3.4;2.3.4. Symplectic Relations for Aberration Coefficients;96
10.3.5;2.3.5. High-Order Transfer Matrices;98
10.3.6;2.3.6. Elimination of Aberrations in Symmetric Multistage Systems;99
10.4;2.4. Calculation of Aberration Expansions;101
10.4.1;2.4.1. Trajectory Method;101
10.4.2;2.4.2. Fringing Field Integral Method;110
11;Chapter 3: Transporting Charged Particle Beams in Static Fields;120
11.1;3.1. Paraxial Geometric Parameters of Charged Particle Lenses;121
11.2;3.2. Axially Symmetric Electrostatic Lenses;123
11.2.1;3.2.1. Conventional Round Lenses;123
11.2.2;3.2.2. Lenses with Object or Image Immersed in the Field;128
11.3;3.3. Two-Dimensional and Nearly Two-Dimensional Electrostatic Lenses;130
11.3.1;3.3.1. Two-Dimensional Lenses;130
11.3.2;3.3.2. Transaxial Lenses;131
11.3.3;3.3.3. Hollow Lenses;134
11.4;3.4. Crossed Electrostatic Lenses with Essentially Three-Dimensional Fields;135
11.5;3.5. Focusing Charged Particles by Electrostatic Mirrors;137
11.6;3.6. Axially Symmetric Magnetic Lenses;138
11.7;3.7. Quadrupole Lenses and Quadrupole Multiplets;143
11.7.1;3.7.1. Focusing Charged Particles by Quadrupole Fields;144
11.7.2;3.7.2. Aberrations of Quadrupole Lenses;147
11.7.3;3.7.3. Quadrupole Multiplets;149
11.8;3.8. Charged Particle Motion Through Periodic Lens Channels;154
11.8.1;3.8.1. Linear Stability of Charged Particle Motion in Periodic Electrostatic Systems;155
11.8.2;3.8.2. Nonlinear Effects in Periodic Lens Channels;162
12;Chapter 4: Transporting Charged Particles in Radiofrequency Fields;166
12.1;4.1. Pseudopotential of an Inhomogeneous Radiofrequency Field;167
12.2;4.2. Transporting Charged Particles in Multipole Radiofrequency Fields;169
12.2.1;4.2.1. Quadrupole Radiofrequency Guide;169
12.2.2;4.2.2. Hexapole and Octopole Radiofrequency Guides;174
12.3;4.3. Radiofrequency Repelling Surfaces;176
12.4;4.4. Collisional Cooling in Gas-Filled Radiofrequency Guides;179
12.4.1;4.4.1. Transport of Ion Beams Through Gas-Filled Radiofrequency Guides;179
12.4.2;4.4.2. Simulation of Gas-Filled Radio Frequency Guides;184
12.5;4.5. Transporting Ions Through Radiofrequency Guides at Intermediate Gas Pressures;186
13;Chapter 5: Static Magnetic Charged Particle Analyzers;194
13.1;5.1. Linear Optic Properties and Aberrations of a Homogeneous Magnetic Field;194
13.2;5.2. Magnetic Sector Analyzers with Object and Image Located in the Field-Free Space;199
13.3;5.3. Focusing Action of Inclined Boundaries of Dipole Magnets;204
13.4;5.4. Sector Analyzers Using Inhomogeneous Magnetic Fields;207
13.5;5.5. Wedge Magnetic Analyzers;211
13.6;5.6. Correction of Image Aberrations in Magnetic Analyzers;212
13.6.1;5.6.1. Proper Shaping of Charged Particle Beams;212
13.6.2;5.6.2. Using Multipole Fields for Correction of Geometric and Chromatic Aberrations;214
13.6.3;5.6.3. Using Curved Sector Field Boundaries;219
13.6.4;5.6.4. Using Inhomogeneous Fields;220
13.6.5;5.6.5. Using Symmetric Field Arrangements;221
13.7;5.7. Multistage Sector Magnetic Analyzers;221
13.7.1;5.7.1. Rigidity Dispersion in Multiple Magnetic Sector Fields;222
13.7.2;5.7.2. Typical Combinations of Two-Sector Fields;222
13.7.3;5.7.3. Achromatic Multistage Systems;223
13.7.4;5.7.4. Magnetic Mass Analyzers with Energy Focusing;225
13.8;5.8. Gas-Filled Magnetic Separators;230
14;Chapter 6: Electrostatic Energy Analyzers;238
14.1;6.1. Sector Field Electrostatic Energy Analyzers;239
14.1.1;6.1.1. Cylindrical Deflector;239
14.1.2;6.1.2. Toroidal and Spherical Deflectors;242
14.1.3;6.1.3. Creating a Toroidal Field Distribution in a Cylindrical Deflector with Terminating Plates;248
14.1.4;6.1.4. Integral Relation for the Rigidity Dispersion in Electrostatic Sector Fields;251
14.1.5;6.1.5. Multistage Electrostatic Sector Analyzers;252
14.1.6;6.1.6. Preretardation of Charged Particles in Electrostatic Energy Analyzers;253
14.1.7;6.1.7. Fringing Field Effects in Electrostatic Sector Analyzers;254
14.2;6.2. Mirror-Type Electrostatic Energy Analyzers;264
14.2.1;6.2.1. Dispersion of Mirror-Type Analyzers;264
14.2.2;6.2.2. Analyzers Focusing in One Direction;267
14.2.3;6.2.3. Cylindrical Mirror Analyzer and its Modifications;270
14.2.4;6.2.4. Planar Field Analyzers Focusing in Two Directions;273
14.2.5;6.2.5. Rotationally Symmetric Mirror Analyzers with Axially Inhomogeneous Fields;275
14.3;6.3. Devices for Simultaneous Energy and Angular Analysis of Charged Particles;278
14.3.1;6.3.1. Polar-Toroidal Analyzer;278
14.3.2;6.3.2. Mirror Analyzers for Simultaneous Energy and Angular Analysis;281
15;Chapter 7: Mass Analyzers With Combined Electrostatic and Magnetic Fields;284
15.1;7.1. Sector Field Mass Analyzers with Energy Focusing;285
15.1.1;7.1.1. Integral Relation for the Rigidity Dispersion in Multistage Analyzers Comprising Electrostatic and Magnetic Sector Field;285
15.1.2;7.1.2. Mass Analyzers with Electrostatic and Magnetic Sectors Deflecting in One Direction;286
15.1.3;7.1.3. Mattauch-Herzog Mass Analyzer;288
15.2;7.2. Wien Filter;290
15.2.1;7.2.1. Paraxial Optical Properties and Aberrations of a Wien Filter;290
15.2.2;7.2.2. Integral Relation for the Rigidity Dispersion in a Wien Filter;293
15.2.3;7.2.3. Fringing Field Effects in a Wien Filter;295
15.3;7.3. Penning Traps;296
15.3.1;7.3.1. Fourier Transform Mass Detection;296
15.3.2;7.3.2. Ion Motion in Penning Traps;298
15.3.3;7.3.3. Excitation of Ion Motion in Penning Traps;303
15.3.4;7.3.4. Ion Injection into Penning Traps;305
16;Chapter 8: Time-of-Flight Mass Analyzers;308
16.1;8.1. Principle of Time-of-Flight Mass Analysis;308
16.2;8.2. Forming Pulsed Ion Beams;310
16.2.1;8.2.1. General Ways of Forming Short Ion Bunches;310
16.2.2;8.2.2. Trapping Pulsed Ion Converters;311
16.2.3;8.2.3. Orthogonal Accelerating Pulsed Ion Converter;312
16.2.4;8.2.4. Forming the Primary Time Focus;314
16.3;8.3. Energy-Isochronous Time-of-Flight Mass Analyzers Based on Ion Mirrors;318
16.3.1;8.3.1. Energy Focusing in One- and Two-Stage Ion Mirrors with Homogeneous Fields;318
16.3.2;8.3.2. Quadratic Ion Mirrors;322
16.4;8.4. Sector Field Energy-Isochronous Time-of-Flight Mass Analyzers;323
16.4.1;8.4.1. Time-of-Flight Mass and Energy Dispersions in Sector Fields;324
16.4.2;8.4.2. Examples of Geometries of Sector Field Time-of-Flight Mass Analyzers;328
16.5;8.5. Multireflection Time-of-Flight Mass Analyzers;331
16.5.1;8.5.1. Principles of Multireflection Time-of-Flight Mass Analyzers;331
16.5.2;8.5.2. Sector Field Multiturn Time-of-Flight Analyzers;334
16.5.3;8.5.3. Mirror-Type Multireflection Time-of-Flight Analyzers;336
17;Chapter 9: Radiofrequency Mass Analyzers;342
17.1;9.1. Quadrupole Mass Filter;342
17.1.1;9.1.1. Principle of Operation of a Quadrupole Mass Filter;342
17.1.2;9.1.2. Mathematical Description of Ion Motion in a Quadrupole Mass Filter;345
17.1.3;9.1.3. Ion Injection into a Quadrupole Filter;350
17.1.4;9.1.4. Nonlinear Effects Due to Field Imperfections in Quadrupole Mass Filters;352
17.1.5;9.1.5. Operation of Quadrupole Mass Filters in Higher-Order Stability Zones;356
17.1.6;9.1.6. Quadrupole Mass Filter in the Radiofrequency-Only Mode;358
17.2;9.2. Monopole Mass Filter;360
17.3;9.3. Paul Trap;362
17.3.1;9.3.1. Ion Motion in a Paul Trap;363
17.3.2;9.3.2. Injection of Ions Into Paul Traps;366
17.3.3;9.3.3. Ion Extraction from Paul Traps;367
17.3.4;9.3.4. Special Designs of Paul Traps;369
17.4;9.4. Linear Ion Trap;371
17.5;9.5. Combined Trap;373
18;References;376
19;Contents of Volumes 151-156;398
20;Index;400