E-Book, Englisch, 316 Seiten
Aging
1. Auflage 2014
ISBN: 978-0-12-405523-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Oxidative Stress and Dietary Antioxidants
E-Book, Englisch, 316 Seiten
ISBN: 978-0-12-405523-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Aging: Oxidative Stress and Dietary Antioxidants bridges the trans-disciplinary divide and covers in a single volume the science of oxidative stress in aging and the potentially therapeutic use of natural antioxidants in the diet or food matrix. The processes within the science of oxidative stress are described in concert with other processes, such as apoptosis, cell signaling, and receptor mediated responses. This approach recognizes that diseases are often multifactorial, and oxidative stress is a single component of this. Gerontologists, geriatricians, nutritionists, and dieticians are separated by divergent skills and professional disciplines that need to be bridged in order to advance preventative as well as treatment strategies. While gerontologists and geriatricians may study the underlying processes of aging, they are less likely to be conversant in the science of nutrition and dietetics. On the other hand, nutritionists and dietitians are less conversant with the detailed clinical background and science of gerontology. This book addresses this gap and brings each of these disciplines to bear on the processes inherent in the oxidative stress of aging. - Nutritionists can apply information related to mitochondrial oxidative stress in one disease to diet-related strategies in another unrelated disease - Dietitians can prescribe new foods or diets containing anti-oxidants for conditions resistant to conventional pharmacological treatments - Dietitians, after learning about the basic biology of oxidative stress, will be able to suggest new treatments to their multidisciplinary teams - Nutritionists and dietitians will gain an understanding of cell signaling and be able to suggest new preventative or therapeutic strategies with anti-oxidant rich foods
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Aging: Oxidative Stress and Dietary Antioxidants;4
3;Copyright;5
4;Contents;6
5;Contributors;10
6;Preface;14
7;Section 1 - OXIDATIVE STRESS AND AGING;16
7.1;Chapter 1 - Oxidative Stress and Frailty: A Closer Look at the Origin of a Human Aging Phenotype;18
7.1.1;INTRODUCTION;18
7.1.2;OXIDATIVE STRESS AND AGING;19
7.1.3;FRAILTY;19
7.1.4;OXIDATIVE STRESS AND FRAILTY;21
7.1.5;UNANSWERED QUESTIONS;27
7.1.6;CONCLUSION AND FUTURE PERSPECTIVES;27
7.1.7;SUMMARY POINTS;28
7.1.8;References;28
7.2;Chapter 2 - Skin Aging and Oxidative Stress;30
7.2.1;INTRODUCTION;30
7.2.2;THE STRUCTURE OF HUMAN SKIN;30
7.2.3;MEASURING SKIN AGING;31
7.2.4;CELLULAR CORRELATES OF SKIN AGING;31
7.2.5;OXIDATIVE STRESS AND INTRINSIC SKIN AGING;32
7.2.6;ENVIRONMENTAL EXPOSURES ASSOCIATED WITH SKIN AGING;33
7.2.7;PHOTOAGING;34
7.2.8;CONCLUSIONS;36
7.2.9;SUMMARY POINTS;36
7.2.10;References;36
7.3;Chapter 3 - Cardiovascular Disease in Aging and the Role of Oxidative Stress;38
7.3.1;INTRODUCTION;38
7.3.2;PHYSIOLOGY OF THE AGING CARDIOVASCULAR SYSTEM;40
7.3.3;THE MOLECULAR BASIS OF OXIDATIVE STRESS AS APPLIED TO THE CARDIOVASCULAR SYSTEM;41
7.3.4;LONGEVITY GENES AND THE LONGEVITY NETWORK;44
7.3.5;OTHER GENES AND PATHWAYS IN OXIDATIVE STRESS AND AGE-RELATED CARDIOVASCULAR DISEASES;48
7.3.6;SUMMARY POINTS;51
7.3.7;References;51
7.4;Chapter 4 - Oxidative Stress, Aging and Mitochondrial Dysfunction in Liver Pathology;54
7.4.1;INTRODUCTION;54
7.4.2;EVIDENCE FOR AGE-ASSOCIATED MORPHOLOGIC, STRUCTURAL AND FUNCTIONAL CHANGES IN THE LIVER;55
7.4.3;EVIDENCE FOR AGE-ASSOCIATED LOSS OF MITOCHONDRIAL BIOENERGETICS IN LIVER;55
7.4.4;OXIDATIVE STRESS AND ANTIOXIDANT RESPONSES IN LIVER AGING;56
7.4.5;OXIDATIVE DAMAGE TO THE NUCLEAR AND MITOCHONDRIAL GENOMES IN LIVER AGING;58
7.4.6;MITOCHONDRIAL DYSFUNCTION AND LIVER-ASSOCIATED DISEASE;60
7.4.7;CONCLUSION;62
7.4.8;SUMMARY POINTS;62
7.4.9;References;62
7.5;Chapter 5 - Arthritis as a Disease of Aging and Changes in Antioxidant Status;64
7.5.1;INTRODUCTION;64
7.5.2;THE CONCEPT OF OXYGEN TOXICITY AND FREE RADICALS;65
7.5.3;OXIDATIVE STRESS IN ARTHRITIS;67
7.5.4;SUMMARY POINTS;72
7.5.5;References;73
7.6;Chapter 6 - Diabetes as a Disease of Aging, and the Role of Oxidative Stress;76
7.6.1;INTRODUCTION;76
7.6.2;TYPE 2 DIABETES AND AGING;76
7.6.3;THE ROLE OF OXIDATIVE STRESS IN HUMAN DISEASE;80
7.6.4;OXIDATIVE STRESS IN TYPE 2 DIABETES AND AGING;80
7.6.5;CONCLUSION;83
7.6.6;SUMMARY POINTS;83
7.6.7;References;83
8;Section 2 - ANTIOXIDANTS AND AGING;86
8.1;Chapter 7 - Oxidative Stress and Antioxidants in Elderly Women;88
8.1.1;INTRODUCTION;88
8.1.2;ROLE OF ESTROGEN IN OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE IN ELDERLY WOMEN;88
8.1.3;ROLE OF TELOMERE LENGTH IN OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE IN ELDERLY WOMEN;89
8.1.4;DIETARY ANTIOXIDANT THERAPIES IN ELDERLY WOMEN;90
8.1.5;SUMMARY POINTS;93
8.1.6;References;93
8.2;Chapter 8 - Antioxidants, Vegetarian Diets and Aging;96
8.2.1;INTRODUCTION;96
8.2.2;HUMAN AGING: WHY AND HOW DOES IT OCCUR, AND WHAT ARE THE CONSEQUENCES OF AGING?;96
8.2.3;OXIDATIVE STRESS AND AGING;97
8.2.4;LOWERING OXIDATIVE STRESS: THE POTENTIAL ROLE OF DIETARY ANTIOXIDANTS IN INCREASING HEALTHSPAN;99
8.2.5;ANTIOXIDANTS IN FOOD;100
8.2.6;VEGETARIAN DIET, ANTIOXIDANTS, OXIDATIVE STRESS AND HEALTHSPAN;102
8.2.7;ANTIOXIDANTS AND HEALTH: MOLECULAR CONNECTIONS AND RESEARCH NEEDS;103
8.2.8;SUMMARY POINTS;105
8.2.9;References;105
8.3;Chapter 9 - Enteral Nutrition to Increase Antioxidant Defenses in Elderly Patients;108
8.3.1;INTRODUCTION;108
8.3.2;ENTERAL NUTRITION IN ELDERLY PATIENTS;108
8.3.3;ENTERAL NUTRITION WITH ANTIOXIDANT PROPERTIES;109
8.3.4;ENTERAL NUTRITION WITH WHEY PROTEIN;109
8.3.5;THE ROLE OF VITAMINS AND MICRONUTRIENTS WITH ANTIOXIDANT PROPERTIES;110
8.3.6;CONCLUSION;112
8.3.7;SUMMARY POINTS;112
8.3.8;References;112
8.4;Chapter 10 - Herbs and Spices in Aging;114
8.4.1;INTRODUCTION;114
8.4.2;SPICES;114
8.4.3;Herbs;117
8.4.4;SEAWEEDS;119
8.4.5;SUMMARY POINTS;120
8.4.6;References;121
8.5;Chapter 11 - Coenzyme Q10 as an Antioxidant in the Elderly;124
8.5.1;OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE;124
8.5.2;AGING;124
8.5.3;COENZYME Q10;125
8.5.4;CONCLUSIONS;130
8.5.5;SUMMARY POINTS;130
8.5.6;References;130
8.6;Chapter 12 - Vitamin C and Physical Performance in the Elderly;134
8.6.1;INTRODUCTION;134
8.6.2;OXIDATIVE STRESS AND EXERCISE;135
8.6.3;OXIDATIVE STRESS, VITAMIN C SUPPLEMENTATION, AND PHYSICAL PERFORMANCE;136
8.6.4;EPIDEMIOLOGY STUDY;136
8.6.5;INTERVENTION STUDY;139
8.6.6;CONCLUSIONS;141
8.6.7;SUMMARY POINTS;141
8.6.8;References;141
8.7;Chapter 13 - Tryptophan and Melatonin-Enriched Foodstuffs to Improve Antioxidant Status in Aging;144
8.7.1;INTRODUCTION;144
8.7.2;DIETARY TRYPTOPHAN AND MELATONIN: SOURCES OF HEALTH;145
8.7.3;CONSUMPTION OF FOODSTUFFS CONTAINING BIOACTIVE COMPOUNDS TO PROTECT AGAINST OXIDATIVE STRESS;148
8.7.4;SUMMARY POINTS;149
8.7.5;Acknowledgments;149
8.7.6;References;149
8.8;Chapter 14 - Protective Effects of Vitamin C on Age-Related Bone and Skin Phenotypes Caused by Intracellular Reactive Oxygen Species;152
8.8.1;INTRODUCTION;152
8.8.2;SOD1 DEFICIENCY INDUCES BONE LOSS;153
8.8.3;VITAMIN C PREVENTS BONE LOSS IN SOD1-DEFICIENT MICE;153
8.8.4;VITAMIN C IMPROVES BONE LOSS INDUCED BY ESTROGEN DEFICIENCY;155
8.8.5;MECHANICAL UNLOADING INDUCES ROS PRODUCTION AND BONE LOSS;155
8.8.6;SKIN ATROPHY IN SOD1-DEFICIENT MICE;155
8.8.7;A VITAMIN C DERIVATIVE IMPROVES SKIN ATROPHY IN SOD1-DEFICIENT MICE;156
8.8.8;SUMMARY POINTS;157
8.8.9;References;157
8.9;Chapter 15 - S-Equol, an Antioxidant Metabolite of Soy Daidzein, and Oxidative Stress in Aging: A Focus on Skin and on the Cardiovascular System;160
8.9.1;INTRODUCTION;160
8.9.2;PROPERTIES OF S-EQUOL;161
8.9.3;AGING SKIN;163
8.9.4;ISOFLAVONES AND AGING SKIN;163
8.9.5;S-EQUOL’S MECHANISM OF REDUCING OXIDATIVE STRESS IN SKIN;164
8.9.6;S-EQUOL AND CARDIOVASCULAR DISEASES;164
8.9.7;S-EQUOL’S MECHANISM FOR REDUCING OXIDATIVE STRESS IN THE CARDIOVASCULAR SYSTEM;166
8.9.8;IMPORTANCE OF S-EQUOL EXPOSURE EARLY IN LIFE;167
8.9.9;SUMMARY POINTS;168
8.9.10;References;168
8.10;Chapter 16 - Magnesium, Oxidative Stress, and Aging Muscle;172
8.10.1;INTRODUCTION;172
8.10.2;MAGNESIUM METABOLISM IN OLDER ADULTS;173
8.10.3;MAGNESIUM, MUSCULAR PERFORMANCE, AND AGING MUSCLE;174
8.10.4;MAGNESIUM, EXERCISE, AND OXIDATIVE STRESS;176
8.10.5;MAGNESIUM, OXIDATIVE STRESS, AND THE AGING MUSCLE: THE ROLE OF INFLAMMATION;176
8.10.6;MAGNESIUM, IMMUNE RESPONSES, AND OXIDATIVE STRESS;177
8.10.7;CONSEQUENCES OF MAGNESIUM IMBALANCE WITH AGE;177
8.10.8;CONCLUSIONS;178
8.10.9;SUMMARY POINTS;178
8.10.10;References;179
8.11;Chapter 17 - Late-Life Depression and Antioxidant Supplements;182
8.11.1;INTRODUCTION;182
8.11.2;ANTIOXIDANTS AND NEUROPSYCHOLOGIC FUNCTIONS IN THE ELDERLY: EVIDENCE FOR ANTIDEPRESSANT ACTIVITY;183
8.11.3;SUMMARY POINTS;189
8.11.4;References;189
8.12;Chapter 18 - Antioxidant and Anti-Inflammatory Role of Melatonin in Alzheimer’s Neurodegeneration;192
8.12.1;INTRODUCTION;192
8.12.2;MELATONIN: SYNTHESIS AND MECHANISMS OF ACTION;193
8.12.3;HOW FREE RADICALS ARE FORMED;196
8.12.4;SOME OXIDATIVE-STRESS-RELATED FACTS ABOUT THE BRAIN;198
8.12.5;WHERE DO FREE RADICALS COME FROM IN THE ALZHEIMER’S DISEASE BRAIN?;198
8.12.6;HOW DOES MELATONIN SCAVENGE FREE RADICALS?;202
8.12.7;MELATONIN STIMULATES ANTIOXIDANT SYSTEMS;204
8.12.8;BREAKING THE CYCLE NEUROINFLAMMATION.OXIDATIVE STRESS;205
8.12.9;MELATONIN: AN ANTI-A.AGENT;205
8.12.10;MELATONIN PRODUCTION DECREASES WITH AGE;206
8.12.11;CONCLUSIONS;206
8.12.12;References;206
8.13;Chapter 19 - Mitochondria-Targeted Antioxidants and Alzheimer’s Disease;210
8.13.1;INTRODUCTION;210
8.13.2;MITOCHONDRIAL REACTIVE OXYGEN SPECIES AS PROBABLE MEDIATORS OF THE ABETA-INDUCED DAMAGE TO ALZHEIMER’S DISEASE NEURONS;211
8.13.3;MITOCHONDRIA-TARGETED ANTIOXIDANTS REDUCE THE TOXIC EFFECTS OF ABETA IN MODELS OF ALZHEIMER’S DISEASE;211
8.13.4;MITOCHONDRIA-TARGETED ANTIOXIDANTS IMPROVE NEUROLOGIC RECOVERY AFTER TRAUMATIC BRAIN INJURY OR STROKE AND REDUCE THE RISK OF DEV...;213
8.13.5;THE GEROPROTECTIVE EFFECT OF SKQ1;214
8.13.6;SUMMARY POINTS;214
8.13.7;Acknowledgment;214
8.13.8;References;214
8.14;Chapter 20 - Downregulation of the Prooxidant Heart Failure Phenotype by Dietary and Nondietary Antioxidants;218
8.14.1;INTRODUCTION;218
8.14.2;CONGESTIVE HEART FAILURE: A PROOXIDANT PHENOTYPE;219
8.14.3;ANTIOXIDANTS DOWNREGULATE THE PROOXIDANT HEART FAILURE PHENOTYPE;221
8.14.4;SUMMARY AND CONCLUSIONS;223
8.14.5;SUMMARY POINTS;224
8.14.6;Acknowledgment;224
8.14.7;References;224
8.15;Chapter 21 - Overview of the Role of Antioxidant Vitamins as Protection Against Cardiovascular Disease: Implications for Aging;228
8.15.1;INTRODUCTION;228
8.15.2;EFFECTS OF AGING ON CARDIOVASCULAR DISEASE;228
8.15.3;PRIMARY PREVENTIVE EFFECTS OF ANTIOXIDANT VITAMINS FOR CVD;229
8.15.4;SECONDARY PREVENTIVE EFFECTS AND THERAPEUTIC EFFECTS OF ANTIOXIDANT VITAMINS FOR CVD;235
8.15.5;EFFECT OF MODIFICATION FACTORS;237
8.15.6;CONCLUSION;237
8.15.7;SUMMARY POINTS;237
8.15.8;References;237
8.16;Chapter 22 - Hypertension, Menopause and Natural Antioxidants in Foods and the Diet;240
8.16.1;INTRODUCTION;240
8.16.2;OXIDATIVE STRESS AND HYPERTENSION: HIDDEN MECHANISMS;240
8.16.3;MENOPAUSE, OXIDATIVE STRESS AND HYPERTENSION: PINK NETWORKING;241
8.16.4;NATURAL ANTIOXIDANT AGENTS;241
8.16.5;CONCLUSIONS;244
8.16.6;SUMMARY POINTS;244
8.16.7;References;244
8.17;Chapter 23 - Aging and Arthritis: Oxidative Stress and Antioxidant Effects of Herbs and Spices;248
8.17.1;INTRODUCTION;248
8.17.2;TYPES OF FREE RADICAL AND THEIR GENERATION;248
8.17.3;THE PHENOMENON OF OXIDATIVE STRESS;249
8.17.4;OXIDATIVE STRESS IN DISEASES;249
8.17.5;AGING AND DISEASES;249
8.17.6;ANTIOXIDANT SYSTEMS;252
8.17.7;TRADITIONAL MEDICINE AND HERBS;252
8.17.8;SUMMARY POINTS;259
8.17.9;References;259
8.18;Chapter 24 - Lycopene and Other Antioxidants in the Prevention and Treatment of Osteoporosis in Postmenopausal Women;262
8.18.1;INTRODUCTION;262
8.18.2;OSTEOPOROSIS;262
8.18.3;OXIDATIVE STRESS;262
8.18.4;ANTIOXIDANTS;263
8.18.5;STUDIES ON THE ANTIOXIDANTS POLYPHENOLS AND LYCOPENE;265
8.18.6;GENERAL SUMMARY AND CONCLUSION;270
8.18.7;Acknowledgments;272
8.18.8;References;272
8.19;Chapter 25 - Zinc, Oxidative Stress in the Elderly and Implications for Inflammation;274
8.19.1;INTRODUCTION;274
8.19.2;DISCOVERY OF ZINC DEFICIENCY IN HUMANS;274
8.19.3;CLINICAL MANIFESTATIONS OF ZINC DEFICIENCY;276
8.19.4;ZINC DEFICIENCY IN ELDERLY SUBJECTS;276
8.19.5;PROPOSED CONCEPT OF MECHANISM OF ZINC ACTION AS AN ANTIOXIDANT AND ANTI-INFLAMMATORY AGENT;285
8.19.6;SUMMARY POINTS;287
8.19.7;References;289
8.20;Chapter 26 - Antioxidant Supplementation in the Elderly and Leukocytes;292
8.20.1;INTRODUCTION;292
8.20.2;CHANGES IN THE IMMUNE SYSTEM DURING AGING;292
8.20.3;THE ROLE OF OXIDATIVE STRESS IN IMMUNE SENESCENCE;294
8.20.4;EFFECTS OF ANTIOXIDANTS ON THE IMMUNE SYSTEM DURING AGING;297
8.20.5;CONCLUSION;300
8.20.6;SUMMARY POINTS;300
8.20.7;References;301
8.21;Chapter 27 - Metabolic Mobilization Strategies to Enhance the Use of Plant-Based Dietary Antioxidants for the Management of Type 2 Diabetes;304
8.21.1;INTRODUCTION;304
8.21.2;THE ROLE OF DIETARY ANTIOXIDANTS AND PLANT PHENOLICS IN THE MANAGEMENT OF TYPE 2 DIABETES;304
8.21.3;INHIBITORY ACTIVITIES OF DIFFERENT PLANT-BASED FOODS ON .-AMYLASE AND .-GLUCOSIDASE;307
8.21.4;ENHANCEMENT AND MOBILIZATION OF PLANT-BASED ANTIOXIDANTS, INCLUDING PHENOLICS;308
8.21.5;CONCLUSION;310
8.21.6;SUMMARY POINTS;310
8.21.7;References;310
9;Index;312
Contributors
ShadwanAlsafwahDivision of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA FawazAlzaidDiabetes and Nutritional Sciences Division, School of Medicine, King’s College London, Franklin-Wilkins Building, London, UK B.AndalluSri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India RazaAskariDivision of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA SylvetteAyala-PeñaDepartment of Pharmacology and Toxicology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico MarioBarbagalloGeriatric Unit, Department of Internal Medicine DIBIMIS, University of Palermo, Italy I.F.F.BenzieDepartment of Health Technology & Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Syamal K.BhattacharyaDivision of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA Brunna CristinaBremer BoaventuraDepartment of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Campus Trindade, Florianópolis/SC, Brazil CorinneCaillaudExercise Physiology and Nutrition, Faculty of Health Sciences, University of Sydney, Lidcombe NSW, Australia AntonioCamargoLipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain JoséEduardo de Aguilar-NascimentoDepartment of Surgery, Julio Muller University Hospital, Federal University of Mato Grosso, Cuiaba, Mato Grosso, Brazil JavierDelgado-ListaLipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain Patricia FariaDi PietroDepartment of Nutrition, Health Sciences Center, Federal University of Santa Catarina, Campus Trindade, Florianópolis/SC, Brazil Dwight A.DishmonDivision of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA Ligia J.DominguezGeriatric Unit, Department of Internal Medicine DIBIMIS, University of Palermo, Italy VictorFarahDivision of Cardiovascular Diseases, University of Tennessee Health Science Center, Memphis, TN, USA AntonioGarcia-RiosLipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain M.GarridoDepartment of Physiology (Neuroimmunophysiology and Chrononutrition Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain Jeffrey S.GreiweAusio Pharmaceuticals, LLC, Cincinnati, Ohio, USA ErikaHosoiResearch Team for Promoting the Independence of the Elderly, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan Chao A.HsiungInstitute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan Chih-ChengHsuInstitute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan Nikolay K.IsaevLomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia AkihitoIshigamiMolecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan HiroyasuIsoPublic Health, Department of Social and Environmental Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan Richard L.JacksonAusio Pharmaceuticals, LLC, Cincinnati, Ohio, USA N.N.KangDepartment of Nutritional Sciences, University of Toronto, Toronto, Canada Nadezhda A.KapayDepartment of Brain Research, Research Center of Neurology, Russian Academy of Medical Sciences, Pereulok Obukha 5, Moscow, Russia JozefKedzioraDepartment of Biochemistry, Collegium Medicum UMK in Bydgoszcz, Poland KorneliaKedziora-KornatowskaDepartment and Clinic of Geriatrics, Collegium Medicum UMK in Bydgoszcz, Poland HirofumiKoyamaDepartment of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Inohana, Chuo-ku, Chiba, Japan Xi-ZhangLinDepartment of Internal Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan XiaoyanLiuUniversity of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, San Antonio, TX, USA, and The Preclinical Medicine Institute of Beijing, University of Chinese Medicine, Chao Yang District, Beijing, China JoseLopez-MirandaLipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain Konstantin G.LyamzaevLomonosov Moscow State University, A.N. Belozersky Institute of Physico-Chemical Biology, Moscow, Russia Lucien C.ManchesterUniversity of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, San Antonio, TX, USA KoutatsuMaruyamaDepartment of Basic Medical Research and Education, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan M.S.MekhaSri Sathya Sai Institute of Higher Learning, Anantapur, A.P., India Maria GraziaModenaUniversity of Modena and Reggio Emilia, Italy SuhailaMohamedInstitute of BioScience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia DaichiMorikawaDepartment of Advanced Aging Medicine, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, Japan, and Department of Orthopaedics, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan HidetoshiNojiriDepartment of Orthopaedics, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan Vinood B.PatelDepartment of Biomedical Science, Faculty of Science & Technology, University of Westminster, London, UK FranciscoPerez-JimenezLipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain PabloPérez-MartinezLipids and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Córdoba, Spain Olga V.PopovaDepartment of Brain Research, Research Center of Neurology, Russian Academy of Medical Sciences, Pereulok Obukha 5, Moscow, Russia Ananda...