E-Book, Englisch, 616 Seiten, eBook
Agrawal / Dutta Semiconductor Lasers
2. Auflage 1993
ISBN: 978-1-4613-0481-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 616 Seiten, eBook
ISBN: 978-1-4613-0481-4
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Since its invention in 1962, the semiconductor laser has come a long way. Advances in material purity and epitaxial growth techniques have led to a variety of semiconductor lasers covering a wide wavelength range of 0. 3- 100 ~m. The development during the 1970s of GaAs semiconductor lasers, emitting in the near-infrared region of 0. 8-0. 9 ~m, resulted in their use for the first generation of optical fiber communication systems. However, to take advantage oflow losses in silica fibers occurring around 1. 3 and 1. 55 ~m, the emphasis soon shifted toward long-wavelength semiconductor lasers. The material system of choice in this wavelength range has been the quaternary alloy InGaAsP. During the last five years or so, the intense development effort devoted to InGaAsP lasers has resulted in a technology mature enough that lightwave transmission systems using InGaAsP lasers are currently being deployed throughout the world. This book is intended to provide a comprehensive account of long-wave length semiconductor lasers. Particular attention is paid to InGaAsP lasers, although we also consider semiconductor lasers operating at longer wave lengths. The objective is to provide an up-to-date understanding of semicon ductor lasers while incorporating recent research results that are not yet available in the book form. Although InGaAsP lasers are often used as an example, the basic concepts discussed in this text apply to all semiconductor lasers, irrespective of their wavelengths.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1. Introduction.- 1.1 Historical Perspective.- 1.2 Semiconductor Materials.- 1.3 Operating Principles.- 1.4 Optical Fiber Communications.- 1.5 Overview.- Problems.- References.- 2. Basic Concepts.- 2.1 Introduction.- 2.2 Maxwell’s Equations.- 2.3 Threshold Condition and Longitudinal Modes.- 2.4 Gain and Stimulated Emission.- 2.5 Waveguide Modes.- 2.6 Emission Characteristics.- Problems.- References.- 3. Recombination Mechanisms in Semiconductors.- 3.1 Introduction.- 3.2 Radiative Recombination.- 3.3 Nonradiative Recombination.- 3.4 Experimental Results.- 3.5 Threshold Current Density.- 3.6 Temperature Dependence of Threshold Current.- Problems.- References.- 4. Epitaxy and Material Parameters of InGaAsP.- 4.1 Introduction.- 4.2 Liquid-Phase Epitaxy.- 4.3 Vapor-Phase Epitaxy.- 4.4 Metal-Organic Vapor-Phase Epitaxy.- 4.5 Molecular-Beam Epitaxy.- 4.6 Lattice-Mismatch Effects.- 4.7 Material Parameters.- 4.8 Strained-Layer Epitaxy.- Problems.- References.- 5. Laser Structures and Their Performance.- 5.1 Introduction.- 5.2 Broad-Area Lasers.- 5.3 Gain-Guided Lasers.- 5.4 Weakly Index-Guided Lasers.- 5.5 Strongly Index-Guided Lasers.- 5.6 Leakage Current.- 5.7 Laser Arrays.- 5.8 Surface-Normal Emitting Lasers.- Problems.- References.- 6. Rate Equations and Operating Characteristics.- 6.1 Introduction.- 6.2 Rate Equations.- 6.3 Steady-State Characteristics.- 6.4 Transient Response.- 6.5 Noise Characteristics.- 6.6 Modulation Response.- 6.7 External Optical Feedback.- Problems.- References.- 7. Distributed-Feedback Semiconductor Lasers.- 7.1 Introduction.- 7.2 DFB Laser Structures.- 7.3 Theory.- 7.4 Performance.- 7.5 DBR Lasers.- 7.6 Tunable Semiconductor Lasers.- 7.7 Transmission Experiments.- Problems.- References.- 8. Coupled-Cavity Semiconductor Lasers.- 8.1 Introduction.-8.2 Coupled-Cavity Schemes.- 8.3 Theory.- 8.4 Operating Characteristics.- 8.5 Diverse Applications.- Problems.- References.- 9. Quantum-Well Semiconductor Lasers.- 9.1 Energy Levels.- 9.2 Density of States.- 9.3 Experimental Observation of Confined States.- 9.4 Radiative Recombination.- 9.5 Auger Recombination.- 9.6 Single Quantum-Well and Multiquantum-Well Lasers.- 9.7 MQW Laser Results.- 9.8 Modulation and Noise Characteristics.- 9.9 Strained Quantum-Well Lasers.- Problems.- References.- 10. Surface-Emitting Lasers.- 10.1 Introduction.- 10.2 Mirror Reflectivity.- 10.3 GaAs-AlGaAs and InGaAs-GaAs Surface-Emitting Lasers.- 10.4 InGaAsP-InP Surface-Emitting Lasers.- 10.5 Laser Arrays.- Problems.- References.- 11. Optical Amplifiers.- 11.1 Introduction.- 11.2 General Concepts.- 11.3 Semiconductor Laser Amplifiers.- 11.4 Fiber Amplifiers.- Problems.- References.- 12. Photonic and Optoelectronic Integrated Circuits.- 12.1 Introduction.- 12.2 Photonic Integrated Circuits.- 12.3 Optoelectronic Integrated Circuits (OEICs).- References.- 13. Infrared and Visible Semiconductor Lasers.- 13.1 Lead-Salt Lasers.- 13.2 Materials and Physical Properties.- 13.3 Band Structure.- 13.4 Optical Gain.- 13.5 Auger Recombination.- 13.6 Laser Diode Fabrication.- 13.7 Laser Properties.- 13.8 Tuning Characteristics.- 13.9 Other Material Systems.- Problems.- References.- 14. Degradation and Reliability.- 14.1 Introduction.- 14.2 Defect Formation in the Active Region.- 14.3 Catastrophic Degradation.- 14.4 Degradation of Current-Confining Junctions.- 14.5 Reliability Assurance.- 14.6 DFB Laser Reliability.- Problems.- References.




