E-Book, Englisch, 384 Seiten, E-Book
Alkauskas / Deák / Neugebauer Advanced Calculations for Defects in Materials
1. Auflage 2011
ISBN: 978-3-527-63853-6
Verlag: Wiley-VCH
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Electronic Structure Methods
E-Book, Englisch, 384 Seiten, E-Book
ISBN: 978-3-527-63853-6
Verlag: Wiley-VCH
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances.
The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.
Autoren/Hrsg.
Weitere Infos & Material
1. Advances in Electronic Structure Methods for Defects and Impurities in Solids
2. Accuracy of Quantum Monte Carlo Methods for Point Defects in Solids
3. Electronic Properties of Interfaces and Defects from Many-body Perturbation Theory: Recent Developments and Applications
4. Accelerating GW Calculations with Optimal Polarizability Basis
5. Calculation of Semiconductor Band Structures and Defects by the Screened Exchange Density Functional
6. Accurate Treatment of Solids with the HSE Screened Hybrid
7. Defect Levels Through Hybrid Density Functionals: Insights and Applications
8. Accurate Gap Levels and their Role in the Reliability of Other Calculated Defect Properties
9. LDA+U and Hybrid Functional Calculationsfor Defects in ZnO, SnO2 and TiO2
10. Critical Evaluation of the LDA+U Approach for Band Gap Corrections in Point Defect Calculations:
The Oxygen Vacancy in ZnO Case Study
11. Predicting Polaronic Defect States by Means of Generalized Koopmans Density Functional Calculations
12. SiO2 in Density Functional Theory and Beyond
13. Overcoming Bipolar Doping Difficulty in Wide Gap Semiconductors
14. Electrostatic Interactions between Charged Defects in Supercells
15. Formation Energies of Point Defects at Finite Temperatures
16. Accurate Kohn-Sham DFT with the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modelling
17. Ab Initio Green's Function Calculation of Hyperfine Interactions for Shallow Defects in Semiconductors
18. Time-Dependent Density Functional Study of the Excitation Spectrum of Point Defects in Semiconductors
19. Which Electronic Structure Method for the Study of Defects: A Commentary