E-Book, Englisch, Band 46, 460 Seiten, eBook
Altenbach / Goldstein / Murashkin Mechanics for Materials and Technologies
1. Auflage 2017
ISBN: 978-3-319-56050-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 46, 460 Seiten, eBook
Reihe: Advanced Structured Materials
ISBN: 978-3-319-56050-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;12
3;List of Contributors;21
4;1Multi-Mode Symmetric and Asymmetric Solutions in the Jeffery-Hamel Problem for a Convergent Channel;28
4.1;Abstract;28
4.2;Key words:;28
4.3;1.1 Introduction and Statement of the Problem;29
4.4;1.2 Analytical Expressions, Asymptotic Expansions, and Integral;34
4.5;1.2 Analytical Expressions, Asymptotic Expansions, and Integral Estimates of the Solutions;34
4.5.1;1.2.1 Perturbation Method for Small Re;34
4.5.2;1.2.2 Perturbation Method for Small Aperture Angles;35
4.5.3;1.2.3 Asymptotic Behavior of the Solution for Large Re;36
4.5.4;1.2.4 Integral Estimates;36
4.6;1.3 Numerical-Analytical Accelerated Convergence Method and;38
4.7;1.3 Numerical-Analytical Accelerated Convergence Method andContinuation with Respect to a Parameter;38
4.8;1.4 Solutions Regularly Depending on the Reynolds Number;40
4.9;1.5 Construction of the Velocity Profiles and Analysis of the;44
4.10;1.5 Construction of the Velocity Profiles and Analysis of theFluid Flow Modes;44
4.11;1.6 Numerical-Analytical Solution of the Problem for theCritical Value of the Channel Angle;48
4.12;1.7 New Multi-Mode Asymmetric Solutions that Cannot be;51
4.13;1.7 New Multi-Mode Asymmetric Solutions that Cannot beRegularly Continued with Respect to Re;51
4.14;1.8 Kinematic and Force Characteristics of Steady Flows;56
4.15;1.9 Conclusions;57
4.16;Acknowledgements;57
4.17;References;57
5;2Riemann’s Method in Plasticity: a Review;59
5.1;Abstract;59
5.2;Key words:;59
5.3;2.1 Preliminary Remarks;59
5.4;2.2 Pressure-Independent Plasticity;61
5.5;2.3 Pressure-Dependent Plasticity;66
5.6;2.4 Planar Ideal Flows;71
5.7;2.5 Conclusions;72
5.8;Acknowledgements;72
5.9;References;72
6;3Homogenization of Corrugated Plates Based on the Dimension Reduction for the Periodicity Cell Problem;74
6.1;Abstract;74
6.2;Key words:;74
6.3;3.1 Introduction;75
6.4;3.2 Statement of the Problem;77
6.5;3.3 Dimension Reduction for the Periodicity Sell Problem;78
6.6;3.4 Symmetric Corrugation;83
6.7;3.5 Numerical Example 1 - Computation of Effective Stiffness ofthin Corrugated Shells;86
6.8;3.6 Computation of the Effective Stiffnesses D2 1212, D2 2121 for Thin Plates;87
6.9;3.7 Numerical Example 2 - Corrugated Plates of ArbitraryThickness;89
6.10;3.8 Universal Relations Between the Effective Stiffness of Corrugated Plates made of Materials with the same Poisson’s Ratio;95
6.11;3.9 Conclusions;96
6.12;Acknowledgements;96
6.13;References;97
7;4Consideration of Non-Uniform and Non-Orthogonal Mechanical Loads for Structural Analysis of Photovoltaic Composite Structures;98
7.1;Abstract;98
7.2;Key words:;98
7.3;4.1 Introduction;99
7.3.1;4.1.1 Motivation;99
7.3.2;4.1.2 Objective and Structure;101
7.3.3;4.1.3 Preliminaries and Notation;102
7.4;4.2 Mechanical Loads at Photovoltaic Modules;104
7.4.1;4.2.1 Loading at Natural Weathering;104
7.4.1.1;4.2.1.1 Snow Loads;105
7.4.1.2;4.2.1.2 Wind Loads;105
7.4.2;4.2.2 Mathematical Description of Mechanical Loads;106
7.4.2.1;4.2.2.1 Load Vector;106
7.4.2.2;4.2.2.2 Direction of Loads;106
7.4.2.3;4.2.2.3 Amplitude and Spatial Distribution of Loads;107
7.5;4.3 Solution Approach with eXtended LayerWise Theory;109
7.5.1;4.3.1 Prerequisites;109
7.5.2;4.3.2 Degrees of Freedom;111
7.5.3;4.3.3 Kinematical Measures;111
7.5.4;4.3.4 Balance Equations and Kinetic Measures;111
7.5.5;4.3.5 Constitutive Equations;114
7.5.6;4.3.6 Boundary Conditions;115
7.5.7;4.3.7 Kinematical Constraints;116
7.5.8;4.3.8 Introduction of Mean and Relative Measures;117
7.5.9;4.3.9 Principle of Virtual Work;118
7.6;4.4 Numerical Implementation;120
7.6.1;4.4.1 Basic Procedure in Finite Element Method;120
7.6.2;4.4.2 Shape Functions;120
7.6.3;4.4.3 JACOBI Transformation;121
7.6.4;4.4.4 Discretisation;122
7.6.4.1;4.4.4.1 Degrees of Freedom;122
7.6.4.2;4.4.4.2 KinematicalMeasures;123
7.6.5;4.4.5 Constitutive Equations for FEM;124
7.6.6;4.4.6 Element Stiffness Relation;125
7.6.7;4.4.7 Surface Load Vector;126
7.6.8;4.4.8 Assembling;127
7.6.9;4.4.9 Numerical Integration and Artificial Stiffening Effects;128
7.7;4.5 Structural Analysis;130
7.7.1;4.5.1 Test Structure;130
7.7.2;4.5.2 Discretisation and Convergence;131
7.7.3;4.5.3 Case Studies;133
7.7.4;4.5.4 Results and Discussion;134
7.7.4.1;4.5.4.1 Degrees of Freedom;134
7.7.4.2;4.5.4.2 Kinetic and Kinematic Quantities;137
7.8;4.6 Conclusion;140
7.9;Acknowledgements;143
7.10;4.A Appendix;143
7.10.1;4.A.1 Constitutive Matrices;143
7.10.2;4.A.2 Auxiliary Matrices;144
7.11;References;145
8;5 Block Element Method for the Stamps of the no Classical Form;148
8.1;Abstract;148
8.2;Key words:;148
8.3;5.1 Introduction;149
8.4;5.2 Statement of the Problem;150
8.5;5.3 Properties of the Integral Equations;151
8.6;5.4 The Block Element Method for a System of Integral Equations;153
8.7;5.5 Study of the Properties of the Solution of the System of Integral Equations and a Boundary Value Problem;154
8.8;5.6 Acknowledgments;156
8.9;References;157
9;6 On the Irreversible Deformations Growth in the Material with Elastic, Viscous, and Plastic Properties and Additional Requirements to Yield Criteria;158
9.1;Abstract;158
9.2;Key words:;158
9.3;6.1 Introduction;158
9.4;6.2 Large Deformations Kinematics;159
9.5;6.3 Governing Equations;163
9.6;6.4 The Flow of Elastic-Viscous-Plastic Solids Inside the Cylindrical Tube;167
9.7;6.5 Viscometric Deformation of the Incompressible Cylindrical Layer;171
9.8;6.6 Conclusion;175
9.9;References;176
10;7On Nonlocal Surface Elasticity and Propagationof Surface Anti-Plane Waves;177
10.1;Abstract;177
10.2;Key words:;177
10.3;7.1 Introduction;177
10.4;7.2 Governing Equations;179
10.5;7.3 Anti-Plane Surface Waves in an Elastic Half-Space;181
10.6;7.4 Conclusions;184
10.7;References;184
11;8Deformation of Spherical Inclusion in an ElasticBody with Account for Influence of InterfaceConsidered as Infinitesimal Layer withAbnormal Properties;187
11.1;Abstract;187
11.2;Key words:;187
11.3;8.1 Introduction;187
11.4;8.2 Model of the Interface Elasticity;188
11.5;8.3 Problem of Spherical Inclusion. Various Solutions;190
11.6;8.4 Conclusion;192
11.7;Acknowledgements;192
11.8;References;192
12;9Analysis of Internal Stresses in a ViscoelasticLayer in Sliding Contact;194
12.1;Abstract;194
12.2;Key words:;194
12.3;9.1 Introduction;194
12.4;9.2 Problem Formulation;195
12.5;9.3 Method of Solution;196
12.6;9.4 Analysis of Internal Stresses;199
12.7;9.5 Conclusions;202
12.8;Acknowledgements;203
12.9;References;203
13;10On the Problem of Diffusion in Materials UnderVibrations;205
13.1;Abstract;205
13.2;Key words:;205
13.3;10.1 Introduction;205
13.4;10.2 The Equation of Impurity Motion;206
13.5;10.3 Statement of the Problem: Governing Equations;208
13.6;10.4 Localization of Diffusion Process;210
13.7;10.5 Structural Transformations of Materials;213
13.8;10.6 Conclusion;214
13.9;Acknowledgements;214
13.10;References;215
14;11A Study of Objective Time Derivatives inMaterial and Spatial Description;216
14.1;Abstract;216
14.2;Key words:;217
14.3;11.1 Introduction and Outline to the Paper;217
14.4;11.2 Frames of Reference – Fundamental Definitions;218
14.4.1;Definition 11.1.;218
14.4.2;Definition 11.2.;219
14.4.3;Definition 11.3.;219
14.4.4;Definition 11.4.;220
14.4.5;Definition 11.5.;220
14.5;11.3 Changing Frames of Reference;223
14.5.1;11.3.1 Kinematic Quantities and Their Images;224
14.5.2;11.3.2 Rotation of one Reference Frame with Respect to Another;228
14.5.3;11.3.3 Motion of FoRs with Respect to Each Other;231
14.6;11.4 Frame Indifference of Operators;233
14.6.1;11.4.1 Transformation Properties of Spatial Gradients;233
14.6.2;11.4.2 Transformation Properties of the Total and Material Time Derivatives;240
14.7;11.5 Conclusions and Outlook;245
14.8;9.A Appendix;246
14.8.1;9.A.1 Rotational Tensors and Angular Velocity Vectors;246
14.9;References;249
15;12On Electronically Restoring an ImperfectVibratory Gyroscope to an Ideal State;251
15.1;Abstract;251
15.2;Key words:;251
15.3;12.1 Introduction;252
15.4;12.2 Notation;254
15.5;12.3 Kinetic Energy, Prestress and Potential Energy;256
15.6;12.4 Tangentially Anisotropic Damping;257
15.7;12.5 Electrical Energy;258
15.8;12.6 Eliminating Frequency Split;262
15.9;12.7 Parametric Excitation;265
15.10;12.8 Principal and Quadrature Vibration;266
15.11;12.9 Numerical Experiment;266
15.12;12.10 Averaging;270
15.13;12.11 Graphical Comparisons and Quantitative Analysis of theExact and Averaged ODE;271
15.14;12.12 Isotropic Damping and the Meander Electrodes;274
15.15;12.13 Conclusion;274
15.16;Acknowledgements;274
15.17;References;275
16;13ShockWave Rise Time and the Viscosity ofLiquids and Solids;277
16.1;Abstract;277
16.2;Key words:;277
16.3;13.1 Introduction;277
16.4;13.2 Experiments and Their Results;278
16.5;13.3 Conclusions;282
16.6;Acknowledgements;282
16.7;References;283
17;14Lowest Vibration Modes of StronglyInhomogeneous Elastic Structures;284
17.1;Abstract;284
17.2;Key words:;284
17.3;14.1 Introduction;284
17.4;14.2 Antiplane Shear Motion;285
17.4.1;14.2.1 Stiffer Outer Domain;287
17.4.2;14.2.2 Stiffer Inner Domain;289
17.5;14.3 Model Examples;290
17.5.1;14.3.1 Two-Layered Circular Cylinder;290
17.5.2;14.3.2 Square Cylinder with a Circular Annular Inclusion;292
17.6;14.4 Concluding Remarks;294
17.7;12.A Appendix;294
17.8;References;295
18;15Geometrical Inverse Thermoelastic Problem forMultiple Inhomogeneities;297
18.1;Abstract;297
18.2;Key words:;297
18.3;15.1 Introduction;297
18.4;15.2 Mathematical Formulation of the Direct Problem;298
18.5;15.3 Reciprocity Principle and Reciprocity Gap Functional;300
18.6;15.4 Statement of the Inverse Problem and a Method of itsSolving;302
18.7;15.5 Numerical Procedure and Numerical Examples;306
18.8;15.6 Conclusions;312
18.9;Acknowledgements;312
18.10;References;312
19;16Indentation of the Regular System of Punchesinto the Foundation with Routh Coating;314
19.1;Abstract;314
19.2;Key words:;314
19.3;16.1 Statement of the Problem;315
19.4;16.2 Dimensionless Form and Operator Representation;317
19.5;16.3 Transformation of Main Equation and Special Basis;318
19.6;16.4 Solving the Problem;320
19.7;16.5 Main Results and Conclusions;325
19.8;Acknowledgements;325
19.9;References;325
20;17Physical Modeling of Rock Deformation andFracture in the Vicinity of Well for DeepHorizons;326
20.1;Abstract;326
20.2;Key words:;326
20.3;17.1 Introduction;326
20.4;17.2 Experimental Facility and Loading Programs for Specimens;327
20.5;17.3 Rock Specimens Test Results;330
20.6;17.4 Conclusion;333
20.7;Acknowledgements;333
20.8;References;334
21;18Full Axially Symmetric Contact of a RigidPunch with a Rough Elastic Half-Space;335
21.1;Abstract;335
21.2;Key words:;335
21.3;18.1 Introduction;335
21.4;18.2 Problem Formulation;336
21.5;18.3 Some Generalizations;340
21.6;References;342
22;19Geometric Aspects of the Theory ofIncompatible Deformations in Growing Solids;343
22.1;Abstract;343
22.2;Key words:;343
22.3;19.1 Introduction;344
22.4;19.2 Naive Geometric Motivation;345
22.5;19.3 Material Manifold;347
22.6;19.4 Growing Solids;350
22.7;19.5 Mappings Between Manifolds;351
22.8;19.6 Deformations;353
22.9;19.7 Material Connection;355
22.10;19.8 Example;357
22.11;References;361
23;20Free Vibrations of a Transversely Isotropic Platewith Application to a Multilayer Nano-Plate;364
23.1;Abstract;364
23.2;Key words:;364
23.3;20.1 Introduction;364
23.4;20.2 Equations of Motion and Their Transformation;366
23.5;20.3 Principal Natural Frequency in the Dependence of Boundary Conditions;368
23.6;20.4 Numerical Results and Their Discussion;370
23.7;20.5 The Generalized Kirchhoff–Love (GKL) Model for a Multilayer Plate;372
23.8;20.6 Continuum Model of a Multilayer Graphene Sheet (MLGS) Vibrations;373
23.9;20.7 Identification of Graphite and Graphene Parameters and some Numerical Results;374
23.10;20.8 Numerical Results and Their Discussion;375
23.11;Acknowledgements;376
23.12;References;376
24;21On Thermodynamics of Wave Processes of HeatTransport;378
24.1;Abstract;378
24.2;Key words:;379
24.3;21.1 Preliminary Remarks;379
24.4;21.2 Thermodynamic Orthogonality and Constitutive Equationsof the Perfect Plasticity;380
24.5;21.3 Internal Entropy Production for a Heat Transport Processin Thermoelastic Continua;384
24.6;21.4 Constitutive Equations for Type-III Thermoelasticity byVirtue of Thermodynamic Orthogonality;387
24.7;21.5 Conclusions;389
24.8;References;390
25;22The Technological Stresses in a VaultedStructure Built Up on a Falsework;392
25.1;Abstract;392
25.2;Key words:;392
25.3;22.1 Introduction;392
25.4;22.2 Statement of the Problem;393
25.5;22.3 Boundary Value Problem for the Built-up Structure;395
25.6;22.4 Analytical Solution of the Problem. Determining theStresses in the Vault Supported by the Falsework;398
25.7;22.5 Residual Stresses in the Finished Structure;399
25.8;Acknowledgements;400
25.9;References;400
26;23Reversible Plasticity Shape-Memory Effect inEpoxy Nanocomposites: Experiments, Modelingand Predictions;402
26.1;Abstract;402
26.2;Key words:;403
26.3;23.1 Introduction;403
26.4;23.2 Experimental Methods;405
26.4.1;23.2.1 Material Selection and Sample Preparation;405
26.4.2;23.2.2 Material Characterization;405
26.4.3;23.2.3 RPSM Characterization;406
26.5;23.3 Mechanism;407
26.6;23.4 Model Description;407
26.6.1;23.4.1 Kinematics;407
26.6.2;23.4.2 Structural Relaxation and Thermal Deformation;409
26.6.3;23.4.3 Constitutive Equations for Stress;409
26.6.4;23.4.4 Flow Rule;411
26.7;23.5 Results and Discussions;411
26.7.1;23.5.1 Mechanical Properties;411
26.7.2;23.5.2 Thermal Properties;413
26.7.3;23.5.3 Morphological Properties;414
26.7.4;23.5.4 RPSM Properties;415
26.8;23.6 Conclusion;423
26.9;18.A Appendix;423
26.9.1;18.A.1 Parameter Determination and Effect of MWCNT on theMaterial Parameters;423
26.9.2;18.A.2 Determination of ?r, k, G and l;424
26.9.3;18.A.3 Determination of C1, C2, tos, ag and ar;425
26.9.4;18.A.4 Determination of hg, ss, Q and h;427
26.10;References;427
27;24The Dynamics of an Accreting Vibrating Rod;431
27.1;Abstract;431
27.2;Key words:;432
27.3;24.1 Introduction;432
27.4;24.2 Equations of Motion and Their Transformations;433
27.5;24.3 Theoretical Treatment: Solution of Mixed Problem to;435
27.6;24.4 Numerical Simulations and Discussions;438
27.7;24.5 Conclusion;443
27.8;Acknowledgements;443
27.9;References;444
28;25A New, Direct Approach Toward ModelingRate-Dependent Fatigue Failure of Metals;446
28.1;Abstract;446
28.2;Key words:;446
28.3;25.1 Introduction;446
28.4;25.2 New Rate-Dependent Elastoplasticity Model;448
28.5;25.3 Failure Under Monotone and Cyclic Loadings;451
28.5.1;25.3.1 Governing Equations in the Uniaxial Case;451
28.5.2;25.3.2 Parameter Identification with Monotone Strain Data;452
28.5.3;25.3.3 Predictions for Fatigue Failure Under Cyclic Loadings;453
28.6;25.4 Numerical Results;454
28.6.1;25.4.1 Failure Under Monotone Strain;454
28.6.2;25.4.2 Predictions for Fatigue Failure Under Cyclic Loadings;455
28.7;25.5 Concluding Remarks;458
28.8;Acknowledgements;458
28.9;References;459