E-Book, Englisch, Band 70, 820 Seiten, eBook
Anatolijs / Nikolai / Vitalii Proceedings of EECE 2019
1. Auflage 2020
ISBN: 978-3-030-42351-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Energy, Environmental and Construction Engineering
E-Book, Englisch, Band 70, 820 Seiten, eBook
Reihe: Lecture Notes in Civil Engineering
ISBN: 978-3-030-42351-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book gathers the latest advances, innovations, and applications in the field of energy, environmental and construction engineering, as presented by international researchers and engineers at the International Scientific Conference Energy, Environmental and Construction Engineering, held in St. Petersburg, Russia on November 19-20, 2019. It covers highly diverse topics, including BIM; bridges, roads and tunnels; building materials; energy efficient and green buildings; structural mechanics; fluid mechanics; measuring technologies; environmental management; power consumption management; renewable energy; smart cities; and waste management. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;International Scientific Conference on Energy, Environmental and Construction Engineering (EECE 2019);6
1.1;Organizers;6
1.2;Proceedings Editors;6
1.3;Scientific Committee;6
2;Contents;9
3; Regularities of Change in the Properties of Paint Coatings on Cement Concretes at Moistening;16
3.1;1 Introduction;16
3.2;2 Materials and Methods;18
3.3;3 Results and Discussion;19
3.4;4 Conclusions;23
3.5;References;28
4; Quality of Construction Works at the Design Phase;30
4.1;1 Introduction;30
4.2;2 Materials and Methods;31
4.2.1;2.1 The Effects of Unexpected Nature When Designing;31
4.2.2;2.2 The Investor and the Designer Have not Fully Imagined the Content of the Design Task;32
4.2.3;2.3 Organizing the Process of the Design Is not Detailed and Thorough;32
4.2.4;2.4 The Skill Level of the Architects and Engineers Is not Commensurate with the Designed Work, Directly Affecting the Quality of the Works;33
4.2.5;2.5 In the Design Organization, Often Omitting the Inspection Work;33
4.3;3 Results and Discussion;34
4.3.1;3.1 The Detailed and Complete Design Task Is Established According to the Target and the Specific Requirements of the Works;34
4.3.2;3.2 Inspection of Design Quality on Architectural and Structural Aspects;35
4.3.3;3.3 Inspection of Inadequacy Design Points Causing the Problems;35
4.3.4;3.4 Inspection of the Feasibility of the Design with the Construction Conditions;36
4.3.5;3.5 Establishment of Appropriate Technical Instructions;37
4.3.6;3.6 Establishment of Detailed and Complete Author Supervision Process for the Construction Phase According to Technical Instructions;37
4.4;4 Conclusions;38
4.5;References;38
5; Analytical Dependence of Deflection of the Lattice Truss on the Number of Panels;40
5.1;1 Introduction;40
5.2;2 Methods;41
5.2.1;2.1 Object of Investigation;41
5.2.2;2.2 Calculation;42
5.2.3;2.3 Numerical Calculations and Kinematic Changeability;43
5.2.4;2.4 Induction;44
5.3;3 Results and Discussion;46
5.4;4 Conclusions;48
5.5;References;49
6; Flare Emissions from Asphalt Plants;51
6.1;1 Introduction;52
6.2;2 Methods;52
6.3;3 Results and Discussion;60
6.4;4 Conclusions;64
6.5;References;66
7; Laboratory Tests of Welded Corrugated Beams with Perforations;68
7.1;1 Introduction;68
7.2;2 Methods;70
7.3;3 Results and Discussion;71
7.4;4 Conclusions;77
7.5;References;77
8; Advanced Sol-Silicate Paint;80
8.1;1 Introduction;81
8.2;2 Materials and Methods;82
8.2.1;2.1 Materials;82
8.2.2;2.2 Experimental Methods;82
8.3;3 Results and Discussion;84
8.3.1;3.1 Mix Design;84
8.3.2;3.2 Silicate Content of the Developed Compositions;85
8.3.3;3.3 IR Spectra Results;87
8.3.4;3.4 Polysilicate Binder Film Curing Kinetics;89
8.4;4 Conclusions;90
8.5;References;91
9; Compressed-Bent Reinforced Wooden Elements with Long-Term Load;93
9.1;1 Introduction;93
9.2;2 Methods;95
9.3;3 Results and Discussion;96
9.4;4 Conclusions;100
9.5;References;101
10; Separation of Relative Deformations of Buildings from a General Displacement Vector of Deformation Marks;104
10.1;1 Introduction;105
10.2;2 Methods;105
10.3;3 Results and Discussion;107
10.4;4 Conclusions;111
10.5;References;112
11; Soil-Concrete Foundation with Lime-Containing Waste as a Reinforcing Component;114
11.1;1 Introduction;114
11.2;2 Methods;117
11.3;3 Results and Discussion;122
11.4;4 Conclusions;125
11.5;References;126
12; Parametric CFD Analysis of Hydraulic Transient in a Pipe with Air Damper;128
12.1;1 Introduction;128
12.2;2 Methods;129
12.3;3 Results and Discussion;130
12.3.1;3.1 General Oscillation Analysis;130
12.3.2;3.2 Parametric Air Damper Influence Analysis;132
12.4;4 Conclusion;134
12.5;References;134
13; Fire Resistance of Loaded I-Section Column from Light Gauge Steel Thin-Walled Profiles;136
13.1;1 Introduction;136
13.2;2 Methods;138
13.2.1;2.1 The Geometric Characteristics of the Sample;138
13.2.2;2.2 Theoretical Calculation of Fire Resistance;139
13.2.3;2.3 Fire Test Method;141
13.3;3 Results and Discussion;142
13.3.1;3.1 Static Task;142
13.3.2;3.2 Modeling;143
13.3.3;3.3 Fire Test;143
13.4;4 Conclusions;146
13.5;References;146
14; The Impact of Aggregates Type to Abrasion Resistance of Mortar;148
14.1;1 Introduction;148
14.2;2 Methods;150
14.2.1;2.1 Cement;150
14.2.2;2.2 Aggregates;150
14.2.3;2.3 Sample Preparation;151
14.2.4;2.4 Laboratory Test;152
14.3;3 Results and Discussion;152
14.4;4 Conclusions;153
14.5;References;153
15; Influence of Temperature on Durability of Concrete Exposed to Liquid Corrosion;156
15.1;1 Introduction;157
15.2;2 Methods;159
15.3;3 Results and Discussion;160
15.4;4 Conclusions;164
15.5;References;165
16; Restoration of Destructive Wood in Supporting Zones of Wooden Beams;167
16.1;1 Introduction;168
16.2;2 Methods;169
16.3;3 Results and Discussion;171
16.4;4 Conclusions;174
16.5;References;175
17; Dynamic Stability of Orthotropic Rectangular Plates with Concentrated Masses;177
17.1;1 Introduction;177
17.2;2 Materials and Methods;179
17.3;3 Results and Discussion;183
17.4;4 Conclusions;185
17.5;References;185
18; Temperature Condition of Asphalt Concrete During Road Usage;187
18.1;1 Introduction;187
18.2;2 Methods;189
18.2.1;2.1 Temperature Distribution of Asphalt Pavement of Roads;189
18.2.2;2.2 The Choice of Bitumen Binder;191
18.2.3;2.3 Experiment;194
18.3;3 Results and Discussion;195
18.4;4 Conclusions;196
18.5;References;197
19; Cost and Energy Assessment of Buildings Thermal Protection Level;200
19.1;1 Introduction;200
19.2;2 Methods;202
19.2.1;2.1 Economic Approach;202
19.2.2;2.2 Energy Approach to Calculate the Optimal Thickness of the Insulating Layer;206
19.3;3 Results and Discussion;208
19.4;4 Conclusions;211
19.5;References;212
20; Numerical Study of the Floating Gravity Base Structure Mooring;214
20.1;1 Introduction;214
20.2;2 Methods;216
20.2.1;2.1 Object of Study;216
20.2.2;2.2 Research Methodology;217
20.3;3 Results and Discussion;220
20.4;4 Conclusions;226
20.5;References;227
21; Cost Effectiveness of the Smart Home System in Civil Engineering;229
21.1;1 Introduction;229
21.2;2 Materials and Methods;230
21.3;3 Results and Discussion;236
21.4;4 Conclusion;236
21.5;References;236
22; Cross-Sectional Warping of Thin-Walled Rods at Plane Frame Joints;239
22.1;1 Introduction;239
22.2;2 Methods;241
22.3;3 Results and Discussion;245
22.4;4 Conclusion;249
22.5;References;250
23; Airborne LIDAR Data Processing for Smart City Modelling;252
23.1;1 Introduction;252
23.2;2 Methods;253
23.2.1;2.1 Particular Qualities of Laser Scanning Used in Study;253
23.2.2;2.2 Proposed Methodology;254
23.3;3 Results;255
23.4;4 Discussion;257
23.4.1;4.1 Technology Gaps;257
23.5;5 Conclusion and Future Research;257
23.6;References;258
24; Warming of Panel Houses in Various Climatic Zones;260
24.1;1 Introduction;260
24.2;2 Materials and Methods;261
24.3;3 Results and Discussion;266
24.4;4 Conclusion;268
24.5;References;269
25; The Durability of Repaired Welded Joints of Civil Engineering Objects Using the Example of Offshore Stationary Platforms;271
25.1;1 Introduction;271
25.2;2 Method;272
25.2.1;2.1 Methods of Investigation of the Stress State of Welded Joints of Offshore Platforms;272
25.2.2;2.2 The Theoretical Basis of the Experimental Study;273
25.3;3 Discussion;276
25.4;4 Conclusion;279
25.5;References;281
26; Energy Efficiency of Heating Ventilation and Air Conditioning System with HP Included in a Water Loop;283
26.1;1 Introduction;283
26.2;2 Methods;285
26.3;3 Results;286
26.3.1;3.1 Method of Calculation of Energy Consumption of Internal Engineering Systems with Simultaneous Consideration of Heat and Electricity;286
26.4;4 Discussion;290
26.5;5 Conclusions;290
26.6;References;292
27; A Method to Assess Adhesion and Durability of Charred Intumescent Layers in Non-specific Conditions;294
27.1;1 Introduction;294
27.2;2 Materials and Methods;297
27.3;3 Results and Discussion;299
27.4;4 Conclusion;300
27.5;References;301
28; Restrictions Applied When Solving One-Dimensional Hydrodynamic Equations;303
28.1;1 Introduction;303
28.2;2 Analysis method;304
28.3;3 Results and Discussion;307
28.4;4 Conclusion;308
28.5;References;308
29; Physically Nonlinear Bending of Composite Plates;310
29.1;1 Introduction;310
29.2;2 Methods;312
29.3;3 Results;317
29.4;4 Discussion;318
29.5;5 Conclusions;319
29.6;References;320
30; The Fire-Resistant Construction for Building Safety;322
30.1;1 Introduction;323
30.2;2 Methods;324
30.3;3 Results and Discussion;324
30.4;4 Conclusions;328
30.5;References;329
31; Thermal Bridges in Wall Panels of Wooden Frame Houses;331
31.1;1 Introduction;331
31.2;2 Methods;333
31.3;3 Results and Discussion;334
31.4;4 Conclusions;337
31.5;References;337
32; Factors of Increasing the Performance of the Bulk Material Mixer of the Gravity Type;339
32.1;1 Introduction;339
32.2;2 Methods;341
32.3;3 Results and Discussion;341
32.4;4 Conclusions;345
32.5;References;348
33; Evaluation of the Limits of the Stability of Elements of Offshore Hydraulic Structures Taking into Account Accumulated Damages;350
33.1;1 Introduction;350
33.2;2 Methods;352
33.3;3 Results and Discussion;354
33.4;4 Conclusions;354
33.5;References;355
34; Procedure for the Formation of the Optimal Transportation Route with Application of Stochastic Programming Tools;357
34.1;1 Introduction;358
34.2;2 Materials and Methods;358
34.2.1;2.1 Literature Review;358
34.2.2;2.2 Formulation of the Problem;360
34.3;3 Results and Discussion;361
34.3.1;3.1 Description of the Developed Procedure;361
34.3.2;3.2 The Implementation of the Procedure on the Example;363
34.4;4 Conclusions;367
34.5;References;370
35; A Study Case of Mathematical Calculation of Urban Heat Island Intensity Based on Urban Geometry;372
35.1;1 Introduction;372
35.2;2 Method;373
35.3;3 Results;375
35.4;4 Conclusion;385
35.5;References;386
36; Method for Determining the Residual Resource of Building Structures by the Terms of Their Operation;388
36.1;1 Introduction;388
36.2;2 Methods;389
36.2.1;2.1 Determination of the Ultimate Service Life of Reinforced Concrete Structures with Temperature and Humidity Effects;390
36.2.2;2.2 Determination of the Ultimate Service Life of Reinforced Concrete Structures by Long-Term Strength;391
36.2.3;2.3 Determination of the Deadline by the Exponential Distribution Law;393
36.2.4;2.4 Determination of the Deadline by a Modified Method According to the Exponential Distribution Law;395
36.2.5;2.5 Determination of the Deadline Depending on Accumulated Depreciation;396
36.3;3 Results and Discussion;397
36.4;4 Conclusions;400
36.5;References;400
37; Amorphous Fiber Based on the Fe–B–C Molten Systems as Dispersed Reinforcement of Floor Slabs;402
37.1;1 Introduction;402
37.2;2 Methods;403
37.3;3 Results and Discussion;404
37.4;4 Conclusions;408
37.5;References;409
38; BIM-Based Quantity Takeoff in Autodesk Revit and Navisworks Manage;411
38.1;1 Introduction;412
38.2;2 Methodology;414
38.3;3 Results and Discussion;416
38.4;4 Conclusion;418
38.5;References;418
39; Calculation of Composite Panel Multilayer Structures in Construction Systems;420
39.1;1 Introduction;421
39.2;2 Methods;422
39.2.1;2.1 Computation;425
39.3;3 Results;426
39.4;4 Discussion;428
39.5;5 Conclusions;428
39.6;References;428
40; Underground Streets in Residential Area: Aspects of Design on the Example of Russia;430
40.1;1 Introduction;430
40.2;2 Material and Methods;431
40.3;3 Result;433
40.4;4 Discussion;434
40.5;References;435
41; SWOT Analysis for Sustainable Development of University Campus in Case Study at WC2 University Network Symposium;437
41.1;1 Introduction;437
41.1.1;1.1 Description of Case;437
41.1.2;1.2 WC2 University Network;438
41.2;2 Materials and Methods;440
41.3;3 Results;442
41.4;4 Discussion;445
41.5;5 Conclusions;446
41.6;References;448
42; Unsteady Temperature Fields in the Calculation of Crack Resistance of Massive Foundation Slab During the Building Period;451
42.1;1 Introduction;452
42.2;2 Materials and Methods;454
42.2.1;2.1 General Data;454
42.2.2;2.2 Effect of Hardening Temperature on Heat Generation, Deformation Modulus and Concrete Creep;455
42.2.3;2.3 Temperature Fluctuation;456
42.3;3 Results;457
42.3.1;3.1 Analysis of Thermal Cracking Resistance. Selection of Heat Insulation Depth;457
42.3.2;3.2 Analysis of Thermal Cracking Resistance for Two Series of Cities;458
42.4;4 Discussion;460
42.5;5 Conclusion;461
42.6;References;462
43; BIM as an Instrument of a Conceptual Project Cost Estimation;464
43.1;1 Introduction;464
43.2;2 Methods;466
43.2.1;2.1 A Structural Analysis of a Construction Project Budget;466
43.2.2;2.2 BIM in a Cost Estimation of Construction Process;467
43.3;3 Results and Discussion;469
43.4;4 Conclusions;471
43.5;References;471
44; A Method of Accounting for Higher Vibration Modes in Structural Dynamics Problems;473
44.1;1 Introduction;473
44.2;2 Methods;474
44.2.1;2.1 Solving the Dynamics Problem of Dynamic Concentrated Force;474
44.2.2;2.2 Solving the Problem of Dynamic Concentrated Moment;476
44.3;3 Results and Discussion;479
44.3.1;3.1 Bending of the Truss by Dynamic Concentrated Force;479
44.3.2;3.2 Bending of a Beam by Dynamic Concentrated Moment;481
44.4;4 Conclusion;482
44.5;References;483
45; Method for Determination of the Characteristics for the Construction Machinery Park on the Basis of Two-Stage Linear Optimization;485
45.1;1 Introduction;485
45.2;2 Materials and Methods;488
45.3;3 Results and Discussion;488
45.4;4 Conclusions;498
45.5;References;498
46; Properties of Cold-Bonded Fly Ash Lightweight Aggregate Concretes;500
46.1;1 Introduction;500
46.2;2 Materials and Methods;501
46.3;3 Test Results and Discussion;502
46.3.1;3.1 Physical and Mechanical Properties of Cold-Bonded Fly Ash Aggregate;502
46.3.2;3.2 Workability of Concrete Test Results;503
46.3.3;3.3 Concrete Samples Test Results;503
46.4;4 Conclusions;505
46.5;References;507
47; The Use of Mineral Wool Insulation and Polyisocyanurate Foam in Terms of Water Absorption;510
47.1;1 Introduction;510
47.2;2 Methods;512
47.3;3 Results and Discussion;516
47.4;4 Conclusions;518
47.5;References;519
48; Indirect Soil Parameters in Monitoring Growth Karst Formations;521
48.1;1 Introduction;521
48.2;2 Methods;523
48.3;3 Results and Discussion;525
48.4;4 Conclusion;528
48.5;References;528
49; Long-Term Buildings’ Space Heating Estimation Method;531
49.1;1 Introduction;531
49.2;2 Methods;533
49.3;3 Results and Discussions;537
49.4;4 Conclusions;540
49.5;References;540
50; Wind Loads on a High-Rise Building;543
50.1;1 Introduction;543
50.2;2 Methods;544
50.2.1;2.1 Wind-Tunnel Procedure;544
50.2.2;2.2 Analytical Procedure;544
50.3;3 Results and Discussion;546
50.4;4 Conclusions;550
50.5;References;553
51; The Effect of the Plaster Layer on the Sound-Insulating Ability of Enclosing Structures Made of Hollow Concrete Stones;555
51.1;1 Introduction;556
51.2;2 Methods;557
51.2.1;2.1 Summary of Test Method;557
51.3;3 Experiment No. 1. Determination of Sound Insulation of an Unplastered Wall Fragment;558
51.3.1;3.1 Experiment No. 2. Determination of Sound Insulation of the Plastered Fragment of the Enclosing Structure;561
51.4;4 Results and Discussion;562
51.4.1;4.1 Experiment No. 1;562
51.4.2;4.2 Experiment No. 2;563
51.5;5 Conclusions;563
51.6;References;565
52; Crack Resistance Criteria of Massive Concrete and Reinforced Concrete Structures During the Construction Period;567
52.1;1 Introduction;567
52.2;2 Materials and Methods;568
52.2.1;2.1 Statement of the Problem;568
52.2.2;2.2 Crack Resistance Criteria;569
52.3;3 Results;569
52.3.1;3.1 Criterion N1;569
52.3.2;3.2 Criterion N2;570
52.3.3;3.3 Criterion N3;571
52.3.4;3.4 Criterion N4;571
52.3.5;3.5 Criterion N5;573
52.4;4 Discussion;573
52.5;5 Conclusion;574
52.6;References;574
53; Effect of Short-Term Heating up to +90 °C on Deformation and Strength of High-Strength Concrete;577
53.1;1 Introduction;577
53.2;2 Materials and Methods;578
53.3;3 Results and Discussion;578
53.3.1;3.1 Temperature and Humidity Regimes of Climatic Influences in the Countries of Southeast Asia;578
53.3.2;3.2 Influence of Temperature and Humidity Conditions of Southeast Asia on Physical and Mechanical Properties of Normal-Strength and High-Strength Concretes;580
53.4;4 Conclusion;582
53.5;References;583
54; Creep Life Prediction of Polyester Reinforcing Geogrids in the Construction of Embankments;585
54.1;1 Introduction;585
54.2;2 Methods;587
54.3;3 Results and Discussion;588
54.3.1;3.1 Tensile Properties;588
54.3.2;3.2 Creep Behavior;588
54.3.3;3.3 Creep Rupture;589
54.3.4;3.4 Practical Application;592
54.4;4 Conclusions;594
54.5;References;594
55; Pipe Cooling of Concrete Masses;596
55.1;1 Introduction;596
55.2;2 Methods;597
55.3;3 Results and Discussion;600
55.4;4 Conclusions;601
55.5;References;602
56; Thermomechanical Characteristics of Coupling and Welded Joints in Reinforced Concrete Structures;604
56.1;1 Introduction;605
56.2;2 Method;607
56.2.1;2.1 “Cold” Experiment No. 1: Tensile Test to Rupture of “Cold” Samples, at Room Temperature 20 °C;608
56.2.2;2.2 “Hot” Experiment No. 2: Tensile Testing Prior to Rupture of “Hot” Samples Preheated to 500 °C;608
56.2.3;2.3 Experiment No. 3: Test of Loaded, Heated and Cooled Rods Simulating the Real Impact of Fire on the Loaded Structure;609
56.3;3 Results and Discussion;610
56.3.1;3.1 Experiment No. 1: Cold Samples;610
56.3.2;3.2 Experiment No. 2: Hot Samples;610
56.3.3;3.3 Experiment No. 3: Testing of Heated and Cooled Samples Under Load;611
56.4;4 Conclusion;613
56.5;References;614
57; High-Performance Concrete in the Supporting Structures of High-Rise Buildings and Constructions;617
57.1;1 Introduction;618
57.2;2 Methods;619
57.2.1;2.1 Description of the Construction;619
57.2.2;2.2 Calculation Methodology;619
57.2.3;2.3 Calculation of Models in the Software Application LIRA-CAD;620
57.3;3 Results;625
57.4;4 Conclusions;630
57.5;References;631
58; Buckling of Cantilever Beam Loaded by Potential Following Moment;633
58.1;1 Introduction;633
58.2;2 Methods;634
58.3;3 Results and Discussion;635
58.3.1;3.1 Exact Solution of Cantilever Beam Stability Problem;635
58.3.2;3.2 Asymptotic Solution of the Linearized Stability Problem;638
58.4;4 Conclusion;641
58.5;References;642
59; Influence of Permeability of Mesh Banners on Wind Loadings;643
59.1;1 Introduction;643
59.2;2 Methods;644
59.2.1;2.1 Object of Research;644
59.2.2;2.2 Numerical Studies;646
59.3;3 Results and Discussion;647
59.4;4 Conclusions;649
59.5;References;650
60; Thermal Insulation for Fixed Formwork from Expanded-Clay Concrete Blocks;652
60.1;1 Introduction;652
60.2;2 Methods;655
60.2.1;2.1 Thermomechanical Calculation of Various Wall Configurations;655
60.2.2;2.2 Calculation of the Cost of Insulation;657
60.2.3;2.3 Modelling the Temperature Distribution in the Block Using the Abaqus Software Package;657
60.3;3 Results and Discussion;658
60.4;4 Conclusions;662
60.5;References;664
61; Static Analysis of Spatial Rod Structures Considering Imperfections in the Fastening of the Floorings;666
61.1;1 Introduction;666
61.2;2 Methods;667
61.3;3 Results and Discussion;669
61.4;4 Conclusions;671
61.5;References;672
62; Influence of Damping Properties of the Person on Decrement of Attenuation of a Flooring of Spatially Rod Grandstands;673
62.1;1 Introduction;673
62.2;2 Methods;674
62.3;3 Results and Discussion;675
62.4;4 Conclusions;679
62.5;References;680
63; An Analytical Method of Stability Assessment of Cantilever Sheet Pile Walls in Conditions of Flooded Soils;681
63.1;1 Introduction;681
63.2;2 Method of Analysis;683
63.3;3 Results and Discussion;688
63.4;4 Conclusion;689
63.5;References;690
64; Monolithic Constructions Quality Assessment with Laser Scanning;692
64.1;1 Introduction;692
64.2;2 Methods;694
64.2.1;2.1 Brief Description of the Object;694
64.2.2;2.2 Laser Scanning Equipment;694
64.2.3;2.3 Work Stages;694
64.3;3 Results and Discussion;695
64.4;4 Conclusion;698
64.5;References;699
65; Elastomer Bearing Modification for Efficient Design;701
65.1;1 Introduction;701
65.2;2 Methods;704
65.2.1;2.1 Modeling of Hyperelastic Materials;704
65.2.2;2.2 Modeling of Hyperelastic Materials;706
65.3;3 Results and Discussion;707
65.4;4 Conclusions;710
65.5;References;711
66; Combined Heat and Power Plant Energy Production Under Changing EU Policy;713
66.1;1 Introduction;713
66.2;2 Methods;714
66.2.1;2.1 Development of Latvian Energy Long-Term Policy Toward the CHP Plants;714
66.2.2;2.2 Development of CHP Plants;716
66.3;3 Results;718
66.3.1;3.1 Defined Problems and Perspectives of CHP Plants;718
66.4;4 Conclusions;721
66.5;References;721
67; Visualization of the Cargo Orientation in Space Under Movement by a Tower Crane in Low Visibility Conditions;723
67.1;1 Introduction;723
67.2;2 Methods;724
67.3;3 Conclusions;729
67.4;References;729
68; Load Carrying Capacity of Prestressed Steel–Concrete Composite Construction;731
68.1;1 Introduction;731
68.2;2 Methods;733
68.3;3 Results and Discussion;742
68.4;4 Conclusions;743
68.5;References;745
69; Endurance of Reinforced Concrete Beams with Small Shear Spans;748
69.1;1 Introduction;748
69.2;2 Methods;750
69.3;3 Results;750
69.3.1;3.1 Fatigue Destruction of Beams with Small Shear Span;750
69.3.2;3.2 Calculation Model for Short Reinforced Concrete Members;752
69.4;4 Discussions;753
69.5;5 Conclusion;758
69.6;References;759
70; Effect of Physical and Chemical Properties of Coal Gangue Under Different Geological Conditions on Mechanical Properties of Concrete;761
70.1;1 Introduction;761
70.2;2 Materials and Methods;762
70.2.1;2.1 Materials;762
70.2.2;2.2 Samples Preparation;763
70.2.3;2.3 Test Methods;763
70.3;3 Results;766
70.3.1;3.1 XRD Test Results;766
70.3.2;3.2 Test Results of Physical Performance;767
70.3.3;3.3 Test Results of Strength;767
70.4;4 Discussion;770
70.4.1;4.1 Relationship Between Mineral Chemical Composition and Physical Properties;770
70.4.2;4.2 Relationship Between Physical Properties and Compressive Strength;770
70.4.3;4.3 The Relationship Between Replacement Mode, Replacement Rate, and Compressive Strength;772
70.5;5 Conclusion;773
70.6;References;774
71; The Use of Aerogel in Building Envelopes;776
71.1;1 Introduction;776
71.2;2 Methods;777
71.3;3 Results and Discussions;777
71.3.1;3.1 Aerogel and Aerogel-Based Materials;777
71.3.2;3.2 The Use of Aerogel in Building Enclosing Structures;780
71.4;4 Conclusions;784
71.5;References;784
72; Application of Laser Scanning Technology for Fixing and Documenting Forms of Architectural Monuments;786
72.1;1 Introduction;786
72.2;2 Fixing Forms of the Architecture Monument on the Basis of Laser Scanning Technology;787
72.3;3 Conclusions;793
72.4;References;796
73; Experimental Investigation of the Cross-Flow Around a Circular Cylinder as a Model of Submerged Floating Tunnel;797
73.1;1 Introduction;797
73.2;2 Methods;799
73.2.1;2.1 Physical Simulation;799
73.2.2;2.2 Numerical Study in ANSYS;801
73.3;3 Results and Discussion;803
73.4;4 Conclusions;804
73.5;References;805
74; The Thermal State of Civil Engineering Objects Using the Example of Fixed Offshore Platforms;807
74.1;1 Introduction;807
74.1.1;1.1 Thermal Effects and Their Influence on the Civil Engineering Objects;807
74.1.2;1.2 Thermal Effects: Case Study;808
74.2;2 Method;809
74.2.1;2.1 Method for Estimating the Temperature of Offshore Platform Elements;809
74.2.2;2.2 Method of Calculating Thermal Flux Densities Caused by Solar Radiation;810
74.3;3 Discussion;817
74.4;4 Conclusion;819
74.5;References;819