Anderson / Feil | A First Course in Abstract Algebra | E-Book | sack.de
E-Book

E-Book, Englisch, 552 Seiten

Anderson / Feil A First Course in Abstract Algebra

Rings, Groups, and Fields, Third Edition
3. Auflage 2014
ISBN: 978-1-4822-4553-0
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Rings, Groups, and Fields, Third Edition

E-Book, Englisch, 552 Seiten

ISBN: 978-1-4822-4553-0
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Like its popular predecessors, A First Course in Abstract Algebra: Rings, Groups, and Fields, Third Edition develops ring theory first by drawing on students’ familiarity with integers and polynomials. This unique approach motivates students in the study of abstract algebra and helps them understand the power of abstraction. The authors introduce groups later on using examples of symmetries of figures in the plane and space as well as permutations.

New to the Third Edition

- Makes it easier to teach unique factorization as an optional topic

- Reorganizes the core material on rings, integral domains, and fields

- Includes a more detailed treatment of permutations

- Introduces more topics in group theory, including new chapters on Sylow theorems

- Provides many new exercises on Galois theory

The text includes straightforward exercises within each chapter for students to quickly verify facts, warm-up exercises following the chapter that test fundamental comprehension, and regular exercises concluding the chapter that consist of computational and supply-the-proof problems. Historical remarks discuss the history of algebra to underscore certain pedagogical points. Each section also provides a synopsis that presents important definitions and theorems, allowing students to verify the major topics from the section.

Anderson / Feil A First Course in Abstract Algebra jetzt bestellen!

Weitere Infos & Material


Numbers, Polynomials, and Factoring
The Natural Numbers
The Integers
Modular Arithmetic
Polynomials with Rational Coefficients
Factorization of Polynomials
Section I in a Nutshell

Rings, Domains, and Fields
Rings
Subrings and Unity
Integral Domains and Fields
Ideals
Polynomials over a Field
Section II in a Nutshell

Ring Homomorphisms and Ideals
Ring Homomorphisms
The Kernel
Rings of Cosets
The Isomorphism Theorem for Rings
Maximal and Prime Ideals
The Chinese Remainder Theorem
Section III in a Nutshell

Groups
Symmetries of Geometric Figures
Permutations
Abstract Groups
Subgroups
Cyclic Groups
Section IV in a Nutshell

Group Homomorphisms
Group Homomorphisms
Structure and Representation
Cosets and Lagrange's Theorem
Groups of Cosets
The Isomorphism Theorem for Groups
Section V in a Nutshell

Topics from Group Theory
The Alternating Groups
Sylow Theory: The Preliminaries
Sylow Theory: The Theorems
Solvable Groups
Section VI in a Nutshell

Unique Factorization
Quadratic Extensions of the Integers
Factorization
Unique Factorization
Polynomials with Integer Coefficients
Euclidean Domains
Section VII in a Nutshell

Constructibility Problems
Constructions with Compass and Straightedge
Constructibility and Quadratic Field Extensions
The Impossibility of Certain Constructions
Section VIII in a Nutshell

Vector Spaces and Field Extensions
Vector Spaces I
Vector Spaces II
Field Extensions and Kronecker's Theorem
Algebraic Field Extensions
Finite Extensions and Constructibility Revisited
Section IX in a Nutshell

Galois Theory
The Splitting Field
Finite Fields
Galois Groups
The Fundamental Theorem of Galois Theory
Solving Polynomials by Radicals
Section X in a Nutshell

Hints and Solutions

Guide to Notation

Index



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.