Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Buch, Englisch, 260 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 500 g
Buch, Englisch, 260 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 500 g
ISBN: 978-0-323-85515-0
Verlag: William Andrew Publishing
Fundamentals of Enriched Finite Element Methods provides an overview of the different enriched finite element methods, detailed instruction on their use, and their real-world applications, recommending in what situations they are best implemented. It starts with a concise background on the theory required to understand the underlying principles behind the methods before outlining detailed instruction on implementation of the techniques in standard displacement-based finite element codes. The strengths and weaknesses of each are discussed, as are computer implementation details, including a standalone generalized finite element package, written in Python. The applications of the methods to a range of scenarios, including multiphase, fracture, multiscale, and immersed boundary (fictitious domain) problems are covered, and readers can find ready-to-use code, simulation videos, and other useful resources on the companion website of the book.
Zielgruppe
<p>Primary: Researchers working on numerical procedures in sold mechanics; Graduate students in a broad range of engineering disciplines;</p> <p>Secondary: Professional engineers looking for new FEM techniques;</p>
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Introduction
2. The Finite Element Method.
3. The p-version of the Finite Element Method
4. The Generalized Finite Element Method
5. Discontinuity-enriched Finite Element Formulations
6. GFEM approximations for fractures
7. Approximations for Weak Discontinuities
8. Immerse boundary (fictitious domain) problems
9. Nonconforming mesh coupling and contact
10. Interface-enriched topology optimization
11. Stability of approximations
12. Computational aspects
13. Approximation theory for partition of unity methods
Appendix. Recollections of the origins of the GFEM