E-Book, Englisch, 265 Seiten
Aref Advances in Applied Mechanics
1. Auflage 2009
ISBN: 978-0-08-088856-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 265 Seiten
ISBN: 978-0-08-088856-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
The Advances in Applied Mechanics book series draws together recent significant advances in various topics in applied mechanics. Published since 1948, Advances in Applied Mechanics aims to provide authoritative review articles on topics in the mechanical sciences, primarily of interest to scientists and engineers working in the various branches of mechanics, but also of interest to the many who use the results of investigations in mechanics in various application areas, such as aerospace, chemical, civil, environmental, mechanical and nuclear engineering.
•Covers all fields of the mechanical sciences
•Highlights classical and modern areas of mechanics that are ready for review
•Provides comprehensive coverage of the field in question
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Advances in Applied Mechanics;4
3;Copyright Page;5
4;Contents;6
5;Preface;8
6;Chapter 1: A Shell Theory for Carbon Nanotubes Based on the Interatomic Potential and Atomic Structure;10
6.1;1. Introduction;11
6.2;2. Interatomic Potentials;16
6.3;3. A Plate Theory for Graphene Based on the Interatomic Potential;19
6.4;4. A Linear Shell Theory for Carbon Nanotubes Based on the Interatomic Potential;27
6.4.1;4.1. Membrane Strains and Curvatures;27
6.4.2;4.2. Constitutive Relations;30
6.4.3;4.3. Equilibrium Equations;34
6.5;5. Can a Single-Wall Carbon Nanotube Be Modeled as a Thin Shell?;34
6.5.1;5.1. Order of Error (Delta/R)3: Not a Classical Linear Elastic Shell;35
6.5.2;5.2. Order of Error (Delta/R)2: A Linear Elastic Orthotropic Shell;35
6.5.3;5.3. Order of Error (Delta/R): A Classical Linear Elastic Shell with a Universal Shell Thickness;40
6.6;6. A Nonlinear, Finite-Deformation Shell Theory for Carbon Nanotubes Based on the Interatomic Potential;43
6.6.1;6.1. General Description of a Curved Surface;43
6.6.2;6.2. Membrane Strains and Curvatures of a Deformed Surface;44
6.6.3;6.3. Deformation of a Single-Wall Carbon Nanotube;45
6.6.4;6.4. Membrane Stresses and Moments in a Carbon Nanotube;47
6.6.5;6.5. Equilibrium Equations for Membrane Stresses and Moments;48
6.6.6;6.6. Examples;51
6.6.6.1;6.6.1. Bending Rigidity of Graphene;51
6.6.6.2;6.6.2. Tension of Carbon Nanotubes;52
6.6.6.3;6.6.3. Pressure of Carbon Nanotubes;54
6.6.6.4;6.6.4. Torsion of Carbon Nanotubes;56
6.6.6.5;6.6.5. Bending of Carbon Nanotubes;58
6.7;7. Instability of Carbon Nanotubes;58
6.7.1;7.1. Instability of Carbon Nanotubes in Tension;59
6.7.2;7.2. Instability of Carbon Nanotubes in Compression;62
6.7.3;7.3. Instability of Carbon Nanotubes Subject toInternal Pressure;65
6.7.4;7.4. Instability of Carbon Nanotubes Subjectto External Pressure;67
6.7.5;7.5. Instability of Carbon Nanotubes in Torsion;69
6.8;8. Concluding Remarks;71
6.9;Acknowledgments;72
6.10;Appendix A: The Incremental Form of Equilibrium Equation;72
6.11;Appendix B: The Symmetric Membrane Stress and Moment, and Covariant Derivatives;73
6.12;References;74
7;Chapter 2: Tensegrity: 60 Years of Art, Science, and Engineering;78
7.1;1. Introduction;79
7.2;2. Tensegrity Origins: The Pioneers;80
7.2.1;2.1. The Birth of the Tensegrity Sculpture;80
7.2.2;2.2. The Birth of the Tensegrity Concept;83
7.3;3. From Abstract Art to Abstract Science;85
7.3.1;3.1. Kenner and Tensegrity;85
7.3.2;3.2. Pioneering Structural Engineering Researchin Tensegrity;85
7.3.3;3.3. Mathematics Research in Tensegrity Frameworks;91
7.3.4;3.4. Pioneering Research in Tensegrity Dynamics;92
7.4;4. The Blossoming 1990s and Beyond;93
7.5;5. Advances in Statics Research;94
7.5.1;5.1. Form-Finding: The Prestressability Problem;94
7.5.2;5.2. Static Response;104
7.6;6. Advances in Dynamics Research;106
7.6.1;6.1. Nonlinear Equations of Motion;106
7.6.2;6.2. Damping, Stiffness, and Stability Properties;109
7.6.3;6.3. Vibration Properties;113
7.6.4;6.4. Clustered Natural Frequencies in Tensegrity Structures;115
7.7;7. Deploying Tensegrity Structures;121
7.8;8. Controllable Tensegrity Structures;126
7.8.1;8.1. Tensegrity Structures and Control Design;126
7.8.2;8.2. Research in Tensegrity Structures Control;127
7.8.3;8.3. A Tensegrity Flight Simulator;129
7.9;9. Tensegrity Structures in Biology;134
7.10;10. The Future;142
7.11;11. Challenges for Controllable Tensegrity Structures;143
7.11.1;11.1. Servomotors;144
7.11.2;11.2. Shape Memory Alloys;145
7.11.3;11.3. Electroactive Polymers;145
7.11.4;11.4. Piezoactuators and Magnetostrictive Actuators;146
7.12;12. Conclusions;147
7.13;Acknowledgments;148
7.14;References;148
8;Chapter 3: Skin Biothermomechanics: Modeling and Experimental Characterization;156
8.1;1. Introduction;157
8.1.1;1.1. Skin Biothermomechanics;158
8.1.1.1;1.1.1. Schematic of Skin Biothermomechanics and Thermal Pain;158
8.1.1.2;1.1.2. Importance of Skin Thermomechanics;158
8.1.2;1.2. Aims and Structure;159
8.2;2. Review of Related Studies;161
8.2.1;2.1. Skin Structure;161
8.2.1.1;2.1.1. Collagen in Dermis;163
8.2.1.2;2.1.2. Elastin in Dermis;164
8.2.1.3;2.1.3. Ground Substance;164
8.2.2;2.2. Skin Bioheat Transfer and Thermal Damage;164
8.2.2.1;2.2.1. Skin Bioheat Transfer;164
8.2.2.2;2.2.2. Skin Thermal Damage;166
8.2.3;2.3. Skin Biomechanics;167
8.2.3.1;2.3.1. Skin Behavior Under Stretch;167
8.2.3.2;2.3.2. Skin Behavior Under Compression;167
8.2.4;2.4. Skin Biothermomechanics;168
8.3;3. Modeling of Skin Biothermomechanics and Thermal Pain;171
8.3.1;3.1. Modeling of Skin Bioheat Transfer;171
8.3.1.1;3.1.1. Pennes Model;172
8.3.1.2;3.1.2. Thermal Wave Model;173
8.3.1.3;3.1.3. Dual-Phase-Lag Model;175
8.3.2;3.2. Modeling of Skin Biothermomechanics;176
8.3.2.1;3.2.1. Model Development;176
8.3.2.2;3.2.2. Case Study;180
8.3.3;3.3. Modeling of Skin Thermal Pain;185
8.3.3.1;3.3.1. Model Development;185
8.3.3.2;3.3.2. Case Study;186
8.4;4. Experimental Methodology;189
8.4.1;4.1. Experimental Characterization of SkinMechanical Properties;190
8.4.2;4.2. Experimental Characterization of SkinThermal Denaturation;191
8.4.3;4.3. Sample Preparation Techniques;191
8.4.3.1;4.3.1. Selection of Samples;191
8.4.3.2;4.3.2. Sample Procurement;192
8.4.3.3;4.3.3. Sample Preparation;193
8.4.4;4.4. Differential Scanning Calorimetry Tests;195
8.4.5;4.5. Hydrothermal Tensile Tests;196
8.4.5.1;4.5.1. System Design;196
8.4.5.2;4.5.2. Validation of the System;200
8.4.5.3;4.5.3. Hydrothermal Tensile Test Procedure;202
8.4.6;4.6. Hydrothermal Compressive Tests;203
8.4.6.1;4.6.1. Hydrothermal Compressive System;203
8.4.6.2;4.6.2. Hydrothermal Compressive Test Procedure;204
8.4.7;4.7. Dynamic Mechanical Analysis;204
8.5;5. Biothermomechanical Behavior of Skin Tissue;205
8.5.1;5.1. Thermal Denaturation of Collagen in Skin Tissue;206
8.5.2;5.2. Tensile Behavior of Skin Tissue;209
8.5.2.1;5.2.1. Uniaxial Tensile Behavior;209
8.5.2.2;5.2.2. Biaxial Tensile Behavior;211
8.5.3;5.3. Compressive Behavior of Skin Tissue;213
8.5.3.1;5.3.1. Typical Example of Compressive Behavior;214
8.5.3.2;5.3.2. Temperature-Dependent Compressive Behavior;214
8.5.3.3;5.3.3. Thermal-Damage-Induced Changes in Compressive Behavior;217
8.5.3.4;5.3.4. Stretch-Rate Sensitivity at Different Thermal Damage Levels;220
8.5.4;5.4. Relaxation Behavior of Skin Tissue;223
8.5.4.1;5.4.1. Modeling of Skin Viscoelastic Behavior;225
8.5.4.2;5.4.2. Relaxation Behavior of Skin Tissue;228
8.5.4.3;5.4.3. Discussion on Skin Relaxation Behavior;231
8.5.5;5.5. Dynamic Viscoelasticity of Skin Tissue;236
8.6;6. Conclusions;238
8.6.1;6.1. Summary;240
8.6.2;6.2. Limitations;240
8.6.3;6.3. Future Work;242
8.7;Acknowledgments;243
8.8;References;243
9;Subject Index;258