E-Book, Englisch, 294 Seiten
Aulisa / Gilliam A Practical Guide to Geometric Regulation for Distributed Parameter Systems
Erscheinungsjahr 2015
ISBN: 978-1-4822-4014-6
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 294 Seiten
Reihe: Monographs and Research Notes in Mathematics
ISBN: 978-1-4822-4014-6
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
A Practical Guide to Geometric Regulation for Distributed Parameter Systems provides an introduction to geometric control design methodologies for asymptotic tracking and disturbance rejection of infinite-dimensional systems. The book also introduces several new control algorithms inspired by geometric invariance and asymptotic attraction for a wide range of dynamical control systems.
The first part of the book is devoted to regulation of linear systems, beginning with the mathematical setup, general theory, and solution strategy for regulation problems with bounded input and output operators. The book then considers the more interesting case of unbounded control and sensing. Mathematically, this case is more complicated and general theorems in this area have become available only recently. The authors also provide a collection of interesting linear regulation examples from physics and engineering.
The second part focuses on regulation for nonlinear systems. It begins with a discussion of theoretical results, characterizing solvability of nonlinear regulator problems with bounded input and output operators. The book progresses to problems for which the geometric theory based on center manifolds does not directly apply. The authors show how the idea of attractive invariance can be used to solve a series of increasingly complex regulation problems. The book concludes with the solutions of challenging nonlinear regulation examples from physics and engineering.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Acknowledgments
Preface
Regulation for Linear Systems
Regulation: Bounded Input and Output Operators
Setup and Statement of Problem
Main Theoretical Result
The Transfer Function
SISO Examples with Bounded Control and Sensing
The MIMO Case
Linear Regulation with Unbounded Control and Sensing
Introduction
Formulation of Control System and Interpolation Spaces
Examples with Unbounded Sensing and Control
Examples Linear Regulation
Introduction
Harmonic Tracking for a Coupled Wave Equation
Control of a Damped Rayleigh Beam
Vibration Regulation of a 2D Plate
Control of a Linearized Stokes Flow in 2 Dimensions
Thermal Control of a 2D Fluid Flow
Thermal Regulation in a 3D Room
Using Fourier Series for Tracking Periodic Signals
Zero Dynamics Inverse Design
Regulation for Nonlinear Systems
Nonlinear Distributed Parameter Systems
Introduction
Nonlinear State Feedback Regulation Problem
Set-Point Regulation for Nonlinear Systems
Tracking/Rejection of Piecewise Constant Signals
Nonlinear Regulation for Time-Dependent Signals
Fourier Series Methods for Nonlinear Regulation
Zero Dynamics Design for Nonlinear Systems
Nonlinear Examples
Introduction
Navier-Stokes Flow in a 2D Forked Channel
Non-Isothermal Navier-Stokes Flow in a 2D Box
2D Chafee-Infante with Time-Dependent Regulation
Regulation of 2D Burgers' Using Fourier Series
Back-Step Navier-Stokes Flow
Nonlinear Regulation Using Zero Dynamics Design
Bibliography
Index
List of Symbols