Bagetta / Corasaniti / Sakurada | Advances in Neuropharmacology | E-Book | www.sack.de
E-Book

E-Book, Englisch, 504 Seiten

Reihe: ISSN

Bagetta / Corasaniti / Sakurada Advances in Neuropharmacology


1. Auflage 2009
ISBN: 978-0-08-095386-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 504 Seiten

Reihe: ISSN

ISBN: 978-0-08-095386-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



This volume provides a broad overview of important new advances in the field of Neuropharmacology. In 20 chapters, a selection of international contributors discuss topics including endocannabinoid function, pain, stress, astrocytes etc, and new possibilities for treatments of neurological diseases with neuropharmacological approaches.
- Cutting-edge articles in neuropharmacology
- Discusses new possibilities for treatments of neurological disorders
- Very international authorship providing a global view of the state of research

Bagetta / Corasaniti / Sakurada Advances in Neuropharmacology jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Advances in Neuropharmacology;4
3;Copyright;5
4;Contents;6
5;Contributors;16
6;Preface;26
7;Chapter 1: Involvement of the Prefrontal Cortex in Problem Solving;28
7.1;I. Introduction;29
7.2;II. Problem-Solving Behavior, Using a Path-Planning Task;31
7.3;III. Goal Representation and Planning in the Prefrontal Cortex;32
7.4;IV. Synchrony as a State Transition and Goal Transformation;33
7.5;V. Involvement of the Prefrontal Cortex in Planning and Execution;34
7.6;VI. Monitoring Action;35
7.7;VII. Summary and Conclusions;37
7.8;References;37
8;Chapter 2: Gluk1 Receptor Antagonists and Hippocampal Mossy Fiber Function;40
8.1;I. Introduction;41
8.2;II. Pharmacological Tools to Investigate the Roles of KARs;42
8.3;III. Conclusions;51
8.4;References;51
9;Chapter 3: Monoamine Transporter as a Target Molecule for Psychostimulants;56
9.1;I. Introduction;56
9.2;II. MAP-Induced Behavioral Sensitization;57
9.3;III. MAP-Induced Hyperthermia and Neuronal Toxicity;58
9.4;Acknowledgments;59
9.5;References;59
10;Chapter 4: Targeted Lipidomics as a Tool to Investigate Endocannabinoid Function;62
10.1;I. Introduction;63
10.2;II. Endocannabinoids;63
10.3;III. Targeted Lipidomics of the Anandamide Pathway;67
10.4;IV. Targeted Lipidomics of the 2-AG Pathway;72
10.5;V. Conclusions;77
10.6;References;77
11;Chapter 5: The Endocannabinoid System as a Target for Novel Anxiolytic and Antidepressant Drugs;84
11.1;I. The Endogenous Cannabinoid System;85
11.2;II. Endocannabinoid Role in Emotional Reactivity and Mood Tone;87
11.3;III. Effects of Exogenously Administered Cannabinoid Agonists and Antagonists;88
11.4;IV. Enhancement of the Endogenous Cannabinoid Tone;89
11.5;V. Faah-Knockout Phenotype;92
11.6;VI. Conclusions;92
11.7;References;93
12;Chapter 6: Gabaa Receptor Function and Gene Expression During Pregnancy and Postpartum;100
12.1;I. Introduction;101
12.2;II. Concentrations of 3a,5a-THP in Rat Brain and Plasma During Pregnancy and After Delivery;102
12.3;III. Changes in Synaptic GABAA-R Gene Expression During Pregnancy and After Delivery;103
12.4;IV. Changes in Extrasynaptic delta-Containing GABAA-R Gene Expression During Pregnancy and After Delivery;107
12.5;V. Changes in GABAA-R Function in the Rat Hippocampus During Pregnancy and After Delivery;109
12.6;VI. Role of Neuroactive Steroids in GABAA-R Plasticity During Pregnancy: Effects of Chronic Blockade of 5a-Reductase by Finaste;112
12.7;VII. Conclusions;115
12.8;References;118
13;Chapter 7: Early Postnatal Stress And Neural Circuit Underlying Emotional Regulation;122
13.1;I. Introduction;123
13.2;II. Behavioral Response and Neural Circuits in Early Postnatal Stressed Rats;124
13.3;III. Conclusions;131
13.4;References;132
14;Chapter 8: Roles of the Histaminergic Neurotransmission on Methamphetamine-Induced Locomotor Sensitization and Reward: A Study ;136
14.1;I. Introduction;137
14.2;II. Methods and Materials;138
14.3;III. Results and Discussion;139
14.4;IV. Conclusion;142
14.5;References;143
15;Chapter 9: Developmental Exposure To Cannabinoids Causes Subtle And Enduring Neurofunctional Alterations;144
15.1;I. Introduction;145
15.2;II. Ontogeny of the Endocannabinoid System;146
15.3;III. Morphological and Neurofunctional Outcomes Induced by Developmental Exposure to Cannabinoids;148
15.4;IV. Conclusions;154
15.5;References;155
16;Chapter 10: Neuronal Mechanisms for Pain-Induced Aversion: Behavioral Studies Using a Conditioned Place Aversion Test;162
16.1;I. Introduction;163
16.2;II. Anterior Cingulate Cortex;163
16.3;III. Amygdala;164
16.4;IV. Bed Nucleus of the Stria Terminalis;165
16.5;V. Other Brain Regions;167
16.6;VI. Conclusion;168
16.7;References;168
17;Chapter 11: Bv8/Prokineticins and their Receptors: A New Pronociceptive System;172
17.1;I. Introduction;173
17.2;II. Bv8-Related Mammalian Peptides;173
17.3;III. Bv8-Prokineticin Receptors;177
17.4;IV. Role of the Bv8-PK2/PKR System in the Neurobiology of Pain;178
17.5;V. Conclusion;181
17.6;References;182
18;Chapter 12: P2Y6-Evoked Microglial Phagocytosis;186
18.1;I. Introduction;186
18.2;II. Chemotaxis;187
18.3;III. Phagocytosis;188
18.4;IV. Conclusion;188
18.5;References;189
19;Chapter 13: PPAR and Pain;192
19.1;I. Introduction;193
19.2;II. Structure and Function of PPAR;194
19.3;III. PPAR and Inflammation;195
19.4;IV. Neuroinflammation and Pain;196
19.5;V. Role of PPAR in Pain;197
19.6;VI. Conclusion;200
19.7;References;201
20;Chapter 14: Involvement of Inflammatory Mediators in Neuropathic Pain Caused by Vincristine;206
20.1;I. Introduction;207
20.2;II. Characterization of Neuropathic Pain Caused by Vincristine;208
20.3;III. Effects of Vincristine on the PNS;208
20.4;IV. Effects of Vincristine on the CNS;210
20.5;V. Other Anticancer Agents that Elicit Neuropathic Pain;212
20.6;VI. Conclusion;212
20.7;References;214
21;Chapter 15: Nociceptive Behavior Induced by the Endogenous Opioid Peptides Dynorphins in Uninjured Mice: Evidence With Intrathecal N-Ethylmaleimide Inhibiting Dynorphin Degradation;218
21.1;I. Introduction;219
21.2;II. Interaction Between Dynorphins and the NMDA Receptor Ion-Channel Complex;220
21.3;III. Nociceptive Behavior Induced by i.t.-Administered Prodynorphin-Derived Peptides and Polycationic Compounds;221
21.4;IV. Degradation of Dynorphins by Cysteine Proteases;223
21.5;V. N-Ethylmaleimide-Induced Nociceptive Behavior Mediated Through Inhibition of Dynorphin Degradation;224
21.6;VI. Conclusion;227
21.7;References;228
22;Chapter 16: Mechanism Of Allodynia Evoked By Intrathecal Morphine-3-Glucuronide In Mice;234
22.1;I. Introduction;235
22.2;II. Mechanism of M3G-Induced Allodynia: Spinal Release of Substance P and Glutamate;236
22.3;III. Mechanism of M3G-Induced Allodynia: Spinal Activation of NO/cGMP/PKG Pathway;237
22.4;IV. Mechanism of M3G-Induced Allodynia: Spinal ERK Activation;238
22.5;V. Mechanism of M3G-Induced Allodynia; Spinal Astrocyte Activation239
22.6;References;241
23;Chapter 17: (-)-Linalool Attenuates Allodynia in Neuropathic Pain Induced by Spinal Nerve Ligation in C57/Bl6 Mice;248
23.1;I. Introduction;249
23.2;II. Materials and Methods;250
23.3;III. Results;253
23.4;IV. Discussion;258
23.5;References;260
24;Chapter 18: Intraplantar Injection Of Bergamot Essential Oil Into The Mouse Hindpaw: Effects On Capsaicin-Induced Nociceptive Behaviors;264
24.1;I. Introduction;265
24.2;II. General Characteristics of Bergamot Essential Oil;266
24.3;III. Antinociception Induced by the Essential Oil of Bergamot;267
24.4;IV. Linalool-Induced Antinociceptive Activity;270
24.5;References;272
25;Chapter 19: New Therapy for Neuropathic Pain;276
25.1;I. Neuropathic Pain;277
25.2;II. Drug Therapy of Neuropathic Pain-Effectiveness of Narcotic Analgesics;278
25.3;III. Alternative Neural Changes in Morphine-Resistant Neuropathic Pain States;279
25.4;IV. New Drug Therapy for Neuropathic Pain;280
25.5;V. Conclusion;283
25.6;References;283
26;Chapter 20: Regulated Exocytosis from Astrocytes:Physiological and Pathological Related Aspects;288
26.1;I. Introduction;289
26.2;II. Are Astrocytes Specialized Secretory Cells?;290
26.3;III. Calcium-Dependent Glutamate Release from Astrocytes is Deregulated in Pathological Conditions with an Inflammatory Component;307
26.4;References;310
27;Chapter 21: Glutamate Release From Astrocytic Gliosomes Under Physiological And Pathological Conditions;322
27.1;I. New Perspectives in Astrocyte Function;323
27.2;II. Gliosomes as a Model to Study Astrocyte Properties;324
27.3;III. Exocytotic Release of Glutamate from Gliosomes;328
27.4;IV. Glutamate Release Induced by Heterotransporter Activation;335
27.5;V. Glutamate Release from Gliosomes in a Mouse Model of Amyotrophic Lateral Sclerosis;338
27.6;VI. Concluding Remarks;340
27.7;References;341
28;Chapter 22: Neurotrophic and Neuroprotective Actions of an Enhancer of Ganglioside Biosynthesis;346
28.1;I. Introduction;347
28.2;II. Development of a Ceramide Analog PDMP;348
28.3;III. Effects of L- and D-PDMP on Neurite Extension;350
28.4;IV. Facilitation of Functional Synapse Formation and Ganglioside Synthesis by l-PDMP;351
28.5;V. Upregulation of p42 MAPK Activity;353
28.6;VI. Improvement of the Spatial Memory Deficit and the Apoptotic Neuronal Death in Ischemic Rats;353
28.7;VII. Effect of l-PDMP on Biosynthesis of Cortical Gangliosides after Repeated Cerebral Ischemia;356
28.8;VIII. Discussion;358
28.9;References;360
29;Chapter 23: Involvement of Endocannabinoid Signaling in the Neuroprotective Effects of Subtype 1 Metabotropic Glutamate Recepto;364
29.1;I. Introduction;365
29.2;II. Role of mGlu Receptors in CA1 Hippocampal Postischemic Neuronal Death;366
29.3;III. Interactions Between mGlu1 Receptors and Endocannabinoids in the CA1 Hippocampal Region;369
29.4;IV. Conclusions;372
29.5;References;374
30;Chapter 24: NF-kappaB Dimers in the Regulation of Neuronal Survival;378
30.1;I. Nuclear Factor-kappaB (NF-kB) in Brain;379
30.2;II. p50/RelA and c-Rel-Containing Dimers Elicit Opposite Regulation of Neuron Vulnerability ;381
30.3;References;385
31;Chapter 25: Oxidative Stress in Stroke Pathophysiology: Validation of Hydrogen Peroxide Metabolism as a Pharmacological Target to Afford Neuroprotection;390
31.1;I. Introduction;391
31.2;II. Experimental Procedures;392
31.3;III. Results;395
31.4;IV. Discussion;397
31.5;References;400
32;Chapter 26: Role of Akt and Erk Signaling in the Neurogenesisfollowing Brain Ischemia;402
32.1;I. Introduction;403
32.2;II. Stimulation of Endogenous Neural Progenitor Proliferation by Neurotrophic Factors in the Hippocampus;404
32.3;III. Transplantation of Neural Stem Cells and Gene Therapy in the Brain Ischemia;405
32.4;IV. Cell Signaling to Promote Neurogenesis in the Adult Brain;406
32.5;V. Vanadium Compounds are Attractive Therapeutics to Promote Neurogenesis in Neurodegenerative Disorders;406
32.6;VI. Conclusion;409
32.7;References;410
33;Chapter 27: Prevention of Glutamate Accumulation and Upregulation of Phospho-Akt may Account for Neuroprotection Afforded by Be;416
33.1;I. Introduction;417
33.2;II. Materials and Methods;418
33.3;III. Results;422
33.4;IV. Discussion;424
33.5;References;430
34;Chapter 28: Identification of Novel Pharmacological Targets to Minimize Excitotoxic Retinal Damage;434
34.1;I. Introduction;435
34.2;II. Neurochemical and Pharmacological Evidence to Support Excitotoxicity in the Mechanisms of RGC Death in Experimental Glaucom;436
34.3;III. Blockade of Excitotoxicity Sustains the PI3-K/Akt Prosurvival Pathway in Retinal Ischemia;441
34.4;IV. Conclusions;445
34.5;References;445
35;Index;452
36;Contents of Recent Volumes;464
37;Color Plates;493



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.