Balchin / Barnes / Kedziorek | Equivariant Topology and Derived Algebra | Buch | 978-1-108-93194-6 | sack.de

Buch, Englisch, Band 474, 356 Seiten, Format (B × H): 203 mm x 229 mm, Gewicht: 499 g

Reihe: London Mathematical Society Lecture Note Series

Balchin / Barnes / Kedziorek

Equivariant Topology and Derived Algebra


Erscheinungsjahr 2021
ISBN: 978-1-108-93194-6
Verlag: Cambridge University Press

Buch, Englisch, Band 474, 356 Seiten, Format (B × H): 203 mm x 229 mm, Gewicht: 499 g

Reihe: London Mathematical Society Lecture Note Series

ISBN: 978-1-108-93194-6
Verlag: Cambridge University Press


This volume contains eight research papers inspired by the 2019 'Equivariant Topology and Derived Algebra' conference, held at the Norwegian University of Science and Technology, Trondheim in honour of Professor J. P. C. Greenlees' 60th birthday. These papers, written by experts in the field, are intended to introduce complex topics from equivariant topology and derived algebra while also presenting novel research. As such this book is suitable for new researchers in the area and provides an excellent reference for established researchers. The inter-connected topics of the volume include: algebraic models for rational equivariant spectra; dualities and fracture theorems in chromatic homotopy theory; duality and stratification in tensor triangulated geometry; Mackey functors, Tambara functors and connections to axiomatic representation theory; homotopy limits and monoidal Bousfield localization of model categories.

Balchin / Barnes / Kedziorek Equivariant Topology and Derived Algebra jetzt bestellen!

Weitere Infos & Material


1. Comparing dualities in the K(n)-local category Paul G. Goerss and Michael J. Hopkins; 2. Axiomatic representation theory of finite groups by way of groupoids Ivo Dell'Ambrogio; 3. Chromatic fracture cubes Omar Antolín-Camarena and Tobias Barthel; 4. An introduction to algebraic models for rational G-spectra David Barnes and Magdalena Kedziorek; 5. Monoidal Bousfield localizations and algebras over operads David White; 6. Stratification and duality for unipotent finite supergroup schemes Dave Benson, Srikanth B. Iyengar, Henning Krause and Julia Pevtsova; 7. Bi-incomplete Tambara functors Andrew J. Blumberg and Michael A. Hill; 8. Homotopy limits of model categories, revisited Julia E. Bergner.


Kedziorek, Magdalena
Magdalena Kedziorek is Assistant Professor in Mathematics at Radboud University in Nijmegen. She has held research positions in the Netherlands, Germany, the United Kingdom and Switzerland, where she has worked on topics including rational stable homotopy theory, equivariant operads and motivic homotopy theory.

Balchin, Scott
Scott Balchin is currently Postdoctoral Fellow at the Max Planck Institute of Mathematics in Bonn. Previously he was Postdoctoral Research Fellow at the University of Warwick. He has published several articles on the use of Quillen model categories in homotopy theory and is the author of A Handbook of Model Categories (2021).

Barnes, David
David Barnes is Senior Lecturer in Mathematics at Queen's University Belfast. His research focuses on stable homotopy theory, usually with either a monoidal or equivariant flavour, often using algebra to describe the structures in question. He is a co-author of Foundations of Stable Homotopy Theory (2020).

Szymik, Markus
Markus Szymik is Professor of Mathematics at NTNU Norwegian University of Science and Technology in Trondheim. His research interests center around algebraic and geometric aspects of symmetry. He has written an introductory textbook on topology (2009 and 2015) and co-edited a conference proceedings on topological data analysis (2020).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.