Berkovich | Groups of Prime Power Order | E-Book | sack.de
E-Book

E-Book, Englisch, Band 46, 532 Seiten

Reihe: De Gruyter Expositions in MathematicsISSN

Berkovich Groups of Prime Power Order

Volume 1
1. Auflage 2008
ISBN: 978-3-11-020822-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark

Volume 1

E-Book, Englisch, Band 46, 532 Seiten

Reihe: De Gruyter Expositions in MathematicsISSN

ISBN: 978-3-11-020822-1
Verlag: De Gruyter
Format: PDF
Kopierschutz: 1 - PDF Watermark



This is the first of three volumes of a comprehensive and elementary treatment of finite -group theory. Topics covered in this monograph include: (a) counting of subgroups, with almost all main counting theorems being proved, (b) regular -groups and regularity criteria, (c)-groups of maximal class and their numerous characterizations, (d) characters of -groups, (e) -groups with large Schur multiplier and commutator subgroups, (f) (?1)-admissible Hall chains in normal subgroups, (g) powerful -groups, (h) automorphisms of -groups, (i) -groups all of whose nonnormal subgroups are cyclic, (j) Alperin's problem on abelian subgroups of small index.

The book is suitable for researchers and graduate students of mathematics with a modest background on algebra. It also contains hundreds of original exercises (with difficult exercises being solved) and a comprehensive list of about 700 open problems.

Berkovich Groups of Prime Power Order jetzt bestellen!

Zielgruppe


Researchers, Graduate Students of Mathematics; Academic Libraries


Autoren/Hrsg.


Weitere Infos & Material


1;Frontmatter;1
2;Contents;5
3;List of definitions and notations;9
4;Foreword;15
5;Preface;17
6;Introduction;21
7;§1. Groups with a cyclic subgroup of index p. Frattini subgroup. Varia;42
8;§2. The class number, character degrees;78
9;§3. Minimal classes;89
10;§4. p-groups with cyclic Frattini subgroup;93
11;§5. Hall’s enumeration principle;101
12;§6. q'-automorphisms of q-groups;111
13;§7. Regular p-groups;118
14;§8. Pyramidal p-groups;129
15;§9. On p-groups of maximal class;134
16;§10. On abelian subgroups of p-groups;148
17;§11. On the power structure of a p-group;166
18;§12. Counting theorems for p-groups of maximal class;171
19;§13. Further counting theorems;181
20;§14. Thompson’s critical subgroup;205
21;§15. Generators of p-groups;209
22;§16. Classification of finite p-groups all of whose noncyclic subgroups are normal;212
23;§17. Counting theorems for regular p-groups;218
24;§18. Counting theorems for irregular p-groups;222
25;§19. Some additional counting theorems;235
26;§20. Groups with small abelian subgroups and partitions;239
27;§21. On the Schur multiplier and the commutator subgroup;242
28;§22. On characters of p-groups;249
29;§23. On subgroups of given exponent;262
30;§24. Hall’s theorem on normal subgroups of given exponent;266
31;§25. On the lattice of subgroups of a group;276
32;§26. Powerful p-groups;282
33;§27. p-groups with normal centralizers of all elements;295
34;§28. p-groups with a uniqueness condition for nonnormal subgroups;299
35;§29. On isoclinism;305
36;§30. On p-groups with few nonabelian subgroups of order pp and exponent p;309
37;§31. On p-groups with small p0-groups of operators;321
38;§32. W. Gaschütz’s and P. Schmid’s theorems on p-automorphisms of p-groups;329
39;§33. Groups of order pm with automorphisms of order pm-1, pm-2 or pm-3;334
40;§34. Nilpotent groups of automorphisms;338
41;§35. Maximal abelian subgroups of p-groups;346
42;§36. Short proofs of some basic characterization theorems of finite p-group theory;353
43;§37. MacWilliams’ theorem;365
44;§38. p-groups with exactly two conjugate classes of subgroups of small orders and exponentp > 2;368
45;§39. Alperin’s problem on abelian subgroups of small index;371
46;§40. On breadth and class number of p-groups;375
47;§41. Groups in which every two noncyclic subgroups of the same order have the same rank;378
48;§42. On intersections of some subgroups;382
49;§43. On 2-groups with few cyclic subgroups of given order;385
50;§44. Some characterizations of metacyclic p-groups;392
51;§45. A counting theorem for p-groups of odd order;397
52;Appendix 1. The Hall–Petrescu formula;399
53;Appendix 2. Mann’s proof of monomiality of p-groups;403
54;Appendix 3. Theorems of Isaacs on actions of groups;405
55;Appendix 4. Freiman’s number-theoretical theorems;413
56;Appendix 5. Another proof of Theorem 5.4;419
57;Appendix 6. On the order of p-groups of given derived length;421
58;Appendix 7. Relative indices of elements of p-groups;425
59;Appendix 8. p-groups withabsolutely regular Frattini subgroup;429
60;Appendix 9. On characteristic subgroups of metacyclic groups;432
61;Appendix 10. On minimal characters of p-groups;437
62;Appendix 11. On sums of degrees of irreducible characters;439
63;Appendix 12. 2-groups whose maximal cyclic subgroups of order > 2 are self-centralizing;442
64;Appendix 13. Normalizers of Sylow p-subgroups of symmetric groups;445
65;Appendix 14. 2-groups with an involution contained in only one subgroup of order 4;451
66;Appendix 15. A criterion for a group to be nilpotent;453
67;Research problems and themes I;457
68;Backmatter;500


Berkovich, Yakov
Yakov Berkovich, University of Haifa, Israel

Yakov Berkovich, University of Haifa, Israel



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.