Bhattacharyya | Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology | E-Book | www.sack.de
E-Book

E-Book, Englisch, 296 Seiten

Reihe: Micro and Nano Technologies

Bhattacharyya Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology


1. Auflage 2015
ISBN: 978-0-323-35288-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 296 Seiten

Reihe: Micro and Nano Technologies

ISBN: 978-0-323-35288-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology is the first book solely dedicated to electrochemical micromachining (EMM). It begins with fundamentals, techniques, processes, and conditions, continuing with in-depth discussions of mechanisms of material removal, including an empirical model on the material removal rate for EMM (supported by experimental validation). The book moves next to construction-related features of EMM setup suitable for industrial micromachining applications, varying types of EMM, and the latest developments in the improvement of EMM setup. Further, it covers power supply, roll of electrolyte, and other major factors influencing EMM processes, and reports research findings concerning the improvement of machining accuracy and efficiency. Finally, the book devotes a chapter to the design and development of micro-tools, one of the most vital components in EMM. - Covers the generation of micro features used for advanced engineering of materials for fabrication of MEMS, microsystems and other micro-engineering applications - Explores the trend of decreasing size of fabricated devices, reflected in coverage of generation of high-precision nano-features on metal and semiconductors utilizing SPM, STM, and AFM, and nanotechnology aspects of EMM - Describes nanofabrication utilizing anodic dissolutions for mass manufacturing by overcoming obstacles utilizing electrochemical microsystem technology (EMST) and electrochemical nanotechnology (ENT)

Professor, Production Engineering Department, Jadavpur University, Kolkata, IndiaField of Specialization: Non-Traditional Machining Processes, Micro Machining.Advanced Manufacturing Technology (AMT), Production Management.Principal Investigator since 1995 for seven multi-year research projects e.g. on Electrochemical Machining (ECM), Electrochemical Discharge Machining (ECDM), and Electrochemical Micromachining (EMM)Professor, Production Engineering Department, since 2000Head of the Department, Production Engineering Department, from 2001 to 2003Coordinator of Quality Improvement Program (QIP), Jadavpur University, since 2002Coordinator of Center of Advanced Study (CAS) Phase II-IV Programs consisting thrust areas: Micromachining and Nanotechnology, Micromanufacturing, sponsored by UGC, since 2003Achieved several Certificates of Merit and Certificates of Achievement Institution Award & Gold Medal by The Institution of Engineers (India) for a research paper Keynote speaker, chair person, presenter and organizer/coordinator of several international conferences.Visited several countries such as England, Dublin, Taiwan, Hongkong, Thailand etc. for research and academic purposes.Board member and Fellow of several academic bodies in several institutionsGuest editor of International journals and editor of conference proceedingsSupervised several Ph.D thesis and filed several patents in his credit.Authored and co-authored around 353+ articlesAuthor of 83 articles with 1352 total citations by 959 documents as listed in ScopusH-Index of 24 per SCOPUS
Bhattacharyya Electrochemical Micromachining for Nanofabrication, MEMS and Nanotechnology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Symbols


m=Mass of a substance altered at an electrode
Q=Total electric charge passed
F=Faraday constant
M=Molar mass of a substance
z=Valency
I=Current
t=Time
n=Number of moles
ne=Number of electrons
A=Area; Atomic weight (Chapter 1); Aspect ratio (Chapter 13)
i'=Current density
i=Partial current; number of machining parameters (Chapter 8)
E=Electrode potential
Eeq=Equilibrium electrode potential
Ei=Electrode potential at current i
E0=Electrode potential at zero current
?E=Electrode polarization
E0'=Formal potential which is the adjusted form of standard potential
v=Reaction rate
vrxn=Net rate of the electrode reaction
H=Heat generated
R=Electrical resistance
V=Voltage
C=Concentration
d0=Nernst diffusion layer thickness
vmt=Rate of mass transfer
m0=Mass transfer coefficient of species O
0* =Bulk concentration of species O
D0=Diffusion coefficient at x=0
CO=Concentration of species O
CR=Concentration of species R
R*=Bulk concentration of species R
mR=Mass transfer coefficient of species R
T=Temperature in Kelvin
R'=Universal gas constant
Rct=Charge transfer resistance
?=Over potential
?ac=Activation overpotential
ji=Partial current density
j=Total current density
?=Actual observed mass removal
?'=Power conversion efficiency
Uoc=Open-circuit potential
Jsc=Short-circuit current density
FF=Fill factor
E0=Irradiance
t=Charging time constant
Cd=Resistance of double layer
?=Radial frequency
Cd=Double-layer capacitance
RW=Warburg Impedance
s=Warburg coefficient
Rct=Charge transfer resistance
i0=Exchange current density
Tb=Boiling temperature
T0=Temperature at the inlet
U0=Velocity at the inlet
ea=Electrochemical equivalent of anode
ce=Specific heat of electrolyte
h0=Equilibrium gap width at gap inlet
?a=Anode metal density
?0=Density at gap inlet
f'=Feed rate of the tool
?s=Specific resistance or resistivity of electrolyte
h=Inter-electrode gap
Qv=Volume of material removed
K=Electrochemical constant for a particular material
?c=Efficiency of dissolution or current efficiency
Qact=Actual weight loss or actual material removed
Qth=Theoretical weight loss or theoretical material removed
J=Anodic limiting current density
D=Effective diffusion coefficient
Csat=Surface concentration
Jmt=Current density due to migration and diffusion
D'=Diffusivity
V/?X=Potential gradient
C/?X=Concentration gradient
q=Charge stored in the capacitor
C', C (Chapter 3)=Capacitance
Ri=Inter-electrode gap resistance
Re=Electrolyte resistance
ic=Charging current
Rshort=Resistance across small flow path between the front end of the tool and workpiece surface i.e., IEG
Rlong=Resistance across long flow path between longitudinal surface of the tool and workpiece along the side of tool
RP=Polarization resistance
?'a=Over potential at anode
?'c=Over potential at cathode
jmt=Current density due to mass transfer
jet=Current density due to electron transfer
Ceq=Equivalent capacitance
V0=On-time voltage
a=Charge transfer coefficient
M'=Molecular mass
Von-time=Volume of material removed per pulse
ton=Pulse on time
t*=Time required for charging of double layer
V*=Flat shape waveform voltage
f=Pulse frequency in...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.