Buch, Englisch, 126 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 415 g
Reihe: Springer Tracts in Electrical and Electronics Engineering
Buch, Englisch, 126 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 415 g
Reihe: Springer Tracts in Electrical and Electronics Engineering
ISBN: 978-981-97-4444-2
Verlag: Springer Nature Singapore
The book discusses almost all aspects of spintronics-based neuromorphic computing, starting from a very basic level, and will be of interest to both spintronics and neuromorphic computing communities. The chapters also cover most simulation and experimental studies reported recently by researchers worldwide on this topic. The book includes an introductory chapter on nanomagnetism and spin physics and another on neural network algorithms (covering both the machine-learning and neuroscience aspects of these algorithms). These introductory chapters will help the readers build their background and truly appreciate the recent research results on spintronics-based neuromorphic computing, presented in the later chapters of the book. Various numerical simulation exercises are also provided in the book.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Regelungstechnik
- Naturwissenschaften Physik Thermodynamik Festkörperphysik, Kondensierte Materie
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
Why Spintronics-Based Neuromorphic Computing?.- Introduction to Nanomagnetism and Spintronics.- Introduction to Computing.- Introduction to Neural Networks.- Ferromagnetic Domain-Wall Devices as Synapses and Neurons.- Design of Non-Spiking Neural Networks with Domain-Wall Devices.- Design of Spiking Neural Networks with Domain-Wall Devices.- Spintronic Oscillators and Their Synchronization Properties.- Neuromorphic Computing using Spintronic Oscillators.- Neural Networks and Probabilistic Computing Through Stochastic Magnetic Switching.