Bhushan | Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 | E-Book | sack.de
E-Book

E-Book, Englisch, 710 Seiten, eBook

Reihe: NanoScience and Technology

Bhushan Scanning Probe Microscopy in Nanoscience and Nanotechnology 2

E-Book, Englisch, 710 Seiten, eBook

Reihe: NanoScience and Technology

ISBN: 978-3-642-10497-8
Verlag: Springer
Format: PDF
Kopierschutz: Wasserzeichen (»Systemvoraussetzungen)



This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.
Bhushan Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1;Scanning Probe Microscopy in Nanoscience and Nanotechnology 2;3
1.1;Foreword;5
1.2;Preface;7
1.3;Contents;9
1.4;Contributors;21
1.5;Part I Scanning Probe Microscopy Techniques;27
1.5.1;Chapter 1 Time-Resolved Tapping-Mode Atomic Force Microscopy;28
1.5.1.1;1.1 Introduction;28
1.5.1.2;1.2 Tip–Sample Interactions in TM-AFM;30
1.5.1.2.1;1.2.1 Interaction Forces in TM-AFM;30
1.5.1.2.2;1.2.2 Cantilever Dynamics and Mechanical Bandwidth in TM-AFM;31
1.5.1.3;1.3 AFM Probes with Integrated Interferometric High Bandwidth Force Sensors;33
1.5.1.3.1;1.3.1 Model;34
1.5.1.3.2;1.3.2 Interferometric Grating Sensor;38
1.5.1.3.3;1.3.3 Sensor Mechanical Response & Temporal Resolution;44
1.5.1.3.4;1.3.4 Fabrication;46
1.5.1.3.5;1.3.5 Detection Schemes;48
1.5.1.3.6;1.3.6 Characterization and Calibration;51
1.5.1.3.7;1.3.7 Time-Resolved Force Measurements;52
1.5.1.4;1.4 Imaging Applications;55
1.5.1.4.1;1.4.1 Nanomechanical Material Mapping;56
1.5.1.4.2;1.4.2 Imaging of Molecular Structures in Self Assembled Monolayers;57
1.5.1.4.3;1.4.3 Imaging Microphase Seperationin Triblock Copolymer;58
1.5.1.5;1.5 Conclusion;59
1.5.1.6;References;60
1.5.2;Chapter 2 Small Amplitude Atomic Force Spectroscopy;63
1.5.2.1;2.1 Introduction;63
1.5.2.2;2.2 Small Amplitude Spectroscopy;66
1.5.2.2.1;2.2.1 Actuation Techniques;67
1.5.2.2.1.1;2.2.1.1 Sample Modulation;68
1.5.2.2.1.2;2.2.1.2 Magnetic Driving;71
1.5.2.2.1.3;2.2.1.3 Acoustic Driving;74
1.5.2.2.2;2.2.2 Effect Frequency Dependent Damping;77
1.5.2.3;2.3 Summary;78
1.5.2.4;References;81
1.5.3;Chapter 3 Combining Scanning Probe Microscopy and Transmission Electron Microscopy;83
1.5.3.1;3.1 Introduction;84
1.5.3.1.1;3.1.1 Why Combine SPM and TEM?;84
1.5.3.2;3.2 Some Aspects of TEM Instrumentation;86
1.5.3.3;3.3 Incorporating an STM Inside a TEM Instrument;87
1.5.3.3.1;3.3.1 Applications of TEMSTM;90
1.5.3.3.1.1;3.3.1.1 Electron Transport Studies;90
1.5.3.3.1.2;3.3.1.2 Field Emission;92
1.5.3.3.1.3;3.3.1.3 Electromigration;92
1.5.3.3.1.4;3.3.1.4 Joule Heating;93
1.5.3.3.1.5;3.3.1.5 Mechanical Studies;98
1.5.3.4;3.4 Incorporating an AFM Inside a TEM Instrument;99
1.5.3.4.1;3.4.1 Optical Force Detection Systems;100
1.5.3.4.2;3.4.2 Non-optical Force Detection Systems;101
1.5.3.4.3;3.4.3 TEMAFM Applications;104
1.5.3.4.3.1;3.4.3.1 Elastic Measurements;104
1.5.3.4.3.2;3.4.3.2 Electromechanical Properties;105
1.5.3.4.3.3;3.4.3.3 Atomic Scale Wires;106
1.5.3.4.3.4;3.4.3.4 Friction and Adhesion;107
1.5.3.5;3.5 Combined TEM and SPM Sample Preparation;108
1.5.3.5.1;3.5.1 Nanowires and Nanoparticles;109
1.5.3.5.2;3.5.2 A Proper Electrical Contact for TEMSPM;111
1.5.3.5.3;3.5.3 Lamella Samples;114
1.5.3.5.4;3.5.4 Electron Beam Irradiation Effects;114
1.5.3.6;3.6 Conclusion;116
1.5.3.7;References;117
1.5.4;Chapter 4 Scanning Probe Microscopy and Grazing-Incidence Small-Angle Scattering as Complementary Tools for the Investigation of Polymer Films and Surfaces;124
1.5.4.1;4.1 Introduction;124
1.5.4.2;4.2 Statistical Analysis of SPM Data;126
1.5.4.3;4.3 Introduction to Grazing-Incidence Small-Angle Scattering;132
1.5.4.4;4.4 Comparison of Real and Reciprocal Space Data;136
1.5.4.5;4.5 Complementary and In Situ Experiments;140
1.5.4.6;4.6 Combined In Situ GISAXS and SPM Measurements;150
1.5.4.7;4.7 Summary and Outlook;151
1.5.4.8;References;152
1.5.5;Chapter 5 Near-Field Microwave Microscopy for Nanoscienceand Nanotechnology;158
1.5.5.1;5.1 Principles of Microwave Microscope;158
1.5.5.1.1;5.1.1 Introduction;158
1.5.5.1.2;5.1.2 Near-field Interaction;159
1.5.5.1.3;5.1.3 Microwave Frequencies;161
1.5.5.2;5.2 Detailed Description of the Near-field Microwave Microscope;162
1.5.5.2.1;5.2.1 Probe-Tip for NFMM;162
1.5.5.2.2;5.2.2 Dipole–Dipole Interaction;163
1.5.5.2.3;5.2.3 Tip–sample Distance Control in NFMM;164
1.5.5.2.4;5.2.4 The Basic Experimental Setup of NFMM;166
1.5.5.3;5.3 Theory of Near-field Microwave Microscope;167
1.5.5.3.1;5.3.1 Transmission Line Theory;167
1.5.5.3.2;5.3.2 Perturbation Theory;169
1.5.5.3.3;5.3.3 Finite-Element Model;170
1.5.5.4;5.4 Electromagnetic Field Distribution;175
1.5.5.4.1;5.4.1 Probe-tip–fluid Interaction;175
1.5.5.4.2;5.4.2 Probe-tip–photosensitive Heterojunction Interaction;176
1.5.5.4.3;5.4.3 Probe-Tip–Ferromagnetic Thin Film, Magnetic Domain Interaction;177
1.5.5.5;5.5 Experimental Results and Images Obtained by Near-Field Microwave Microscope;179
1.5.5.5.1;5.5.1 NFMM Characterization of Dielectrics and Metals;179
1.5.5.5.2;5.5.2 NFMM Characterization of Semiconductor Thin Films;180
1.5.5.5.3;5.5.3 NFMM Characterization of DNA Array, SAMs, and Mixture Fluids;181
1.5.5.5.4;5.5.4 Biosensing of Fluids by a NFMM;183
1.5.5.5.5;5.5.5 NFMM Characterization of Solar Cells;185
1.5.5.5.6;5.5.6 NFMM Characterization of Organic FET;188
1.5.5.5.7;5.5.7 NFMM Characterization of Magnetic Domains;190
1.5.5.6;References;192
1.5.6;Chapter 6 Single Cluster AFM Manipulation: a Specialized Tool to Explore and Control Nanotribology Effects;195
1.5.6.1;6.1 Introduction;195
1.5.6.2;6.2 Manipulation and Friction Effects Explored by Dynamic AFM;197
1.5.6.2.1;6.2.1 Experimental Evidences;197
1.5.6.2.2;6.2.2 Controlled Movements;201
1.5.6.2.3;6.2.3 Depinning and Energy Dissipation;203
1.5.6.3;6.3 The Problem of Contact Area in Nanotribology Explored by AFM Cluster Manipulation;208
1.5.6.4;6.4 Conclusion;213
1.5.6.5;References;214
1.6;Part II Characterization;217
1.6.1;Chapter 7 Cell Adhesion Receptors Studied by AFM-Based Single-Molecule Force Spectroscopy;218
1.6.1.1;7.1 Introduction;219
1.6.1.2;7.2 AFM-Based Single-Molecule Force Spectroscopy;223
1.6.1.3;7.3 Receptor–Ligand Interactions;224
1.6.1.4;7.4 Cell Adhesion Interactions on Living Cells;225
1.6.1.5;7.5 Limitations of the AFM Method;233
1.6.1.6;References;234
1.6.2;Chapter 8 Biological Application of Fast-Scanning Atomic Force Microscopy;237
1.6.2.1;8.1 Introduction;237
1.6.2.2;8.2 Principles of Biological Fast-Scanning AFM;239
1.6.2.2.1;8.2.1 Hansma's Fast-Scanning AFM;239
1.6.2.2.2;8.2.2 Miles' Fast-Scanning AFM;239
1.6.2.2.3;8.2.3 Ando's Fast-Scanning AFM;240
1.6.2.3;8.3 Effects of a Scanning Probe and Mica Surface on Biological Specimens;241
1.6.2.3.1;8.3.1 Experimental Conditions Required for Fast-Scanning AFM Imaging;241
1.6.2.3.2;8.3.2 Effects of High-Speed Scanning on the Behavior of DNA in Solution;242
1.6.2.3.3;8.3.3 Effects of High-Speed Scanning on Protein Movement;242
1.6.2.4;8.4 Application to Biological Macromolecule Interactions;245
1.6.2.4.1;8.4.1 Application to Protein–Protein Interaction;245
1.6.2.4.1.1;8.4.1.1 Single-Molecule Kinetics Analyses of Chaperonin Reaction;245
1.6.2.4.1.2;8.4.1.2 Single-Molecule Morphological Analyses of Motor Proteins;248
1.6.2.4.2;8.4.2 Application to DNA–Protein Interaction;249
1.6.2.4.2.1;8.4.2.1 Dynamics of DNA-Targeted Enzyme Reaction;249
1.6.2.4.2.2;8.4.2.2 Dynamics of More Complex Protein–DNA Interaction;251
1.6.2.4.2.3;8.4.2.3 Nucleosome Dynamics: Sliding and Disruption;253
1.6.2.5;8.5 Mechanisms of Signal Transduction at the Single-Molecule Level;253
1.6.2.5.1;8.5.1 Conformational Changes of Ligand-GatedIon Channels;255
1.6.2.5.2;8.5.2 Conformational Changes of G-protein Coupled Receptors;255
1.6.2.5.3;8.5.3 Direct Visualization of Albers–Post Scheme of P-Type ATPases;256
1.6.2.6;8.6 Conclusion;258
1.6.2.7;References;258
1.6.3;Chapter 9 Transport Properties of Graphene with Nanoscale Lateral Resolution;267
1.6.3.1;9.1 Introduction;268
1.6.3.2;9.2 Transport Properties of Graphene;272
1.6.3.2.1;9.2.1 Electronic Bandstructure and Dispersion Relation;272
1.6.3.2.2;9.2.2 Density of States;276
1.6.3.2.3;9.2.3 Carrier Density;276
1.6.3.2.4;9.2.4 Quantum Capacitance;278
1.6.3.2.5;9.2.5 Transport Properties: Mobility, Electron Mean Free Path;279
1.6.3.2.5.1;9.2.5.1 Intrinsic Transport Properties;280
1.6.3.2.5.2;9.2.5.2 Transport Properties Limited by Extrinsic Scattering Mechanisms;282
1.6.3.2.5.3;9.2.5.3 Electronic Transport Close to the Dirac Point;283
1.6.3.2.5.4;9.2.5.4 Transport Far from the Dirac Point;284
1.6.3.3;9.3 Local Transport Properties of Graphene by Scanning Probe Methods;289
1.6.3.3.1;9.3.1 Lateral Inhomogeneity in the Carrier Density and in the Density of States;289
1.6.3.3.1.1;9.3.1.1 Scanning Single Electron Transistor Microscopy;289
1.6.3.3.1.2;9.3.1.2 Scanning Tunneling Microscopy and Spectroscopy;291
1.6.3.3.2;9.3.2 Nanoscale Measurements of Graphene Quantum Capacitance;293
1.6.3.3.3;9.3.3 Local Electron Mean Free Path and Mobility in Graphene;295
1.6.3.3.4;9.3.4 Local Electronic Properties of Epitaxial Graphene/4H-SiC (0001) Interface;298
1.6.3.4;9.4 Conclusion;301
1.6.3.5;References;302
1.6.4;Chapter 10 Magnetic Force Microscopy Studies of Magnetic Features and Nanostructures;306
1.6.4.1;10.1 Magnetic Force Microscopy;306
1.6.4.1.1;10.1.1 Introduction;306
1.6.4.1.2;10.1.2 MFM Basic Principles;307
1.6.4.1.3;10.1.3 MFM Image Contrast;308
1.6.4.1.4;10.1.4 Magnetic Imaging Resolution;309
1.6.4.2;10.2 High-Resolution MFM Tips;310
1.6.4.3;10.3 Magnetic Domains;315
1.6.4.4;10.4 Patterned Nanomagnetic Films;320
1.6.4.4.1;10.4.1 FIB Milled Patterns;320
1.6.4.4.1.1;10.4.1.1 FIB Milling;320
1.6.4.4.1.2;10.4.1.2 Magnetic Interactions of Ni80Fe20 Arrays;320
1.6.4.4.2;10.4.2 Arrays of Magnetic Dots by Direct Laser Patterning;322
1.6.4.4.2.1;10.4.2.1 Direct Laser Interference Patterning;322
1.6.4.4.2.2;10.4.2.2 In Situ MFM Imaging Under Applied Magnetic Fields;324
1.6.4.5;10.5 Template-Mediated Assembly of FePt Nanoclusters;328
1.6.4.6;10.6 Interlayer Exchange-Coupled Nanocomposite Thin Films;329
1.6.4.6.1;10.6.1 (Co/Pt)/NiO/(CoPt) Multilayers with Perpendicular Anisotropy;330
1.6.4.6.1.1;10.6.1.1 Introduction;330
1.6.4.6.1.2;10.6.1.2 MFM Images of Varying NiO Thickness;330
1.6.4.6.1.3;10.6.1.3 Domain Overlap;331
1.6.4.6.2;10.6.2 Co/Ru/Co Trilayers with In-Plane Anisotropy;332
1.6.4.7;10.7 Conclusion (Outlook);333
1.6.4.8;References;334
1.6.5;Chapter 11 Semiconductors Studied by Cross-sectional Scanning Tunneling Microscopy;339
1.6.5.1;11.1 Introduction;339
1.6.5.2;11.2 Cleaving Methods and Geometries;340
1.6.5.3;11.3 Properties of Cleaved Surfaces;345
1.6.5.3.1;11.3.1 The (111) Surface of Silicon and Germanium;345
1.6.5.3.2;11.3.2 The (110) Surface of Silicon;347
1.6.5.3.3;11.3.3 The (110) Surface of III–V Semiconductors;347
1.6.5.3.4;11.3.4 The (110) Surface of II–VI Semiconductors;348
1.6.5.4;11.4 Semiconductor Bulk Properties;348
1.6.5.4.1;11.4.1 Ordering in Semiconductor Alloys;348
1.6.5.4.2;11.4.2 Phase Separation Effects;350
1.6.5.5;11.5 Low-Dimensional Semiconductor Nanostructures;350
1.6.5.5.1;11.5.1 Quantum Wells;351
1.6.5.5.2;11.5.2 Quantum Dots;355
1.6.5.6;11.6 Impurities in Semiconductors;362
1.6.5.6.1;11.6.1 Impurity Atoms in Silicon;363
1.6.5.6.2;11.6.2 Impurity Atoms in III–V and II–VI Semiconductors;364
1.6.5.7;References;367
1.6.6;Chapter 12 A Novel Approach for Oxide Scale Growth Characterization: Combining Etching with Atomic Force Microscopy;372
1.6.6.1;12.1 Introduction;373
1.6.6.2;12.2 Oxidation of Silicon Carbide;374
1.6.6.3;12.3 Silica: Growth and Crystallization;375
1.6.6.4;12.4 Etching;379
1.6.6.5;12.5 Scale and Interface Morphology;380
1.6.6.6;12.6 Kinetics: Details and Overall Model;388
1.6.6.7;12.7 Conclusion and Outlook;394
1.6.6.8;References;395
1.6.7;Chapter 13 The Scanning Probe-Based Deep Oxidation Lithography and Its Application in Studying the Spreading of Liquid n-Alkane;401
1.6.7.1;13.1 Introduction;401
1.6.7.2;13.2 Part 1. The Chemical Patterning Method for Alkane Spreading Study;402
1.6.7.2.1;13.2.1 Octadecyltrichlorosilane as the Substrate for Pattern Fabrication;402
1.6.7.2.2;13.2.2 Fabricating Hydrophilic Chemical Patterns on OTS: The Scanning Probe Deep OxidationLithography;404
1.6.7.2.2.1;13.2.2.1 The Experimental Setup;404
1.6.7.2.3;13.2.3 The Structure and Chemistry of the OTSpd Pattern;406
1.6.7.2.4;13.2.4 The Depth of the OTSpd Pattern;407
1.6.7.2.5;13.2.5 OTSpd Is Terminated with Carboxylic Acid Group;409
1.6.7.2.6;13.2.6 The Two-Step Patterning Method for Liquid Spreading Studies;411
1.6.7.2.7;13.2.7 The Validity of the Two-Step Patterning Approach;411
1.6.7.2.8;13.2.8 The Time Scale of the Heating–Freezing Cycle and the Time Scale of the Spreading;412
1.6.7.2.8.1;13.2.8.1 Feasibility of the ``Heat–Freeze'' Approach to Capture Snapshots of Spreading;412
1.6.7.2.8.2;13.2.8.2 Interference by Surface Freezing;413
1.6.7.3;13.3 Part 2. Structures of Long-Chain Alkanes on Surface;413
1.6.7.3.1;13.3.1 Alkane Structures on Hydrophilic Surfaces and on Hydrophobic Surfaces;414
1.6.7.3.1.1;13.3.1.1 The Alkane Tilting in the Seaweed-Shaped Alkane Layers;414
1.6.7.3.2;13.3.2 The Multiple Domains Within a Seaweed-Shaped Layer;417
1.6.7.4;13.4 Part 3. The Role of Vapor During the Spreadingof Liquid Alkane;419
1.6.7.4.1;13.4.1 The Stability of the Parallel Layer Duringthe Spreading;423
1.6.7.5;13.5 Conclusion;426
1.6.7.6;References;427
1.6.8;Chapter 14 Self-assembled Transition Metal Nanoparticles on Oxide Nanotemplates;430
1.6.8.1;14.1 Introduction;430
1.6.8.2;14.2 The Structure of the UT Oxide Layers;432
1.6.8.2.1;14.2.1 TiOx/Pt(111);433
1.6.8.2.2;14.2.2 Al2O3/Ni3 Al(111);435
1.6.8.2.3;14.2.3 FeO/Pt(111);437
1.6.8.3;14.3 The Oxide Layers as Nanotemplates for Metal NPs;438
1.6.8.3.1;14.3.1 Au and Fe on z'-TiOx-Pt(111);439
1.6.8.3.2;14.3.2 Metals on Al2O3/Ni3Al(111);442
1.6.8.3.3;14.3.3 Au on FeO/Pt(111);446
1.6.8.4;14.4 Conclusions;450
1.6.8.5;References;450
1.6.9;Chapter 15 Mechanical and Electrical Properties of Alkanethiol Self-Assembled Monolayers: A Conducting-Probe Atomic Force Microscopy Study;453
1.6.9.1;15.1 Introduction;453
1.6.9.2;15.2 Order, Orientation, and Surface Coverage;455
1.6.9.3;15.3 Conducting-Probe Atomic Force Microscopy;458
1.6.9.4;15.4 Theoretical Framework;463
1.6.9.4.1;15.4.1 Elastic Adhesive Contact;463
1.6.9.4.2;15.4.2 Effective Elastic Modulus of a Film–Substrate System;464
1.6.9.4.3;15.4.3 Electron Tunneling Through Thin Insulating Films;466
1.6.9.5;15.5 Mechanical Properties;468
1.6.9.6;15.6 Electrical Properties;472
1.6.9.7;15.7 Conclusions and Future Directions;477
1.6.9.8;References;479
1.6.10;Chapter 16 Assessment of Nanoadhesion and Nanofriction Properties of Formulated Cellulose-Based Biopolymers by AFM;486
1.6.10.1;16.1 Introduction;486
1.6.10.2;16.2 Application of Cellulose-Based Biopolymers in Pharmaceutical Formulations;487
1.6.10.3;16.3 General Composition of Pharmaceutical Film Coatings;488
1.6.10.3.1;16.3.1 Plasticizers;488
1.6.10.3.2;16.3.2 Surfactants and Lubricants;489
1.6.10.4;16.4 Structure and Bulk Properties of HPMC Biopolymers;490
1.6.10.4.1;16.4.1 Chemical Structure of HPMC;490
1.6.10.4.2;16.4.2 Physicochemical Properties;491
1.6.10.5;16.5 Physicochemical Properties of HPMC-Formulated Films;494
1.6.10.5.1;16.5.1 Materials;494
1.6.10.5.2;16.5.2 Pure HPMC Film Formation;495
1.6.10.5.3;16.5.3 Formulation of HPMC–Stearic Acid Films and HPMC–PEG Films;495
1.6.10.5.4;16.5.4 Thermomechanical Properties of HPMC–PEG Films;496
1.6.10.5.5;16.5.5 Thermo-Mechanical Properties of HPMC–SA Films;496
1.6.10.6;16.6 Surface Properties of HPMC-Formulated Films Adhesion;499
1.6.10.6.1;16.6.1 Surface Topography and Morphologies by AFM;499
1.6.10.6.1.1;16.6.1.1 Surface Imaging of Pure HPMC Film;499
1.6.10.6.1.2;16.6.1.2 Surface Imaging of HPMC–PEG Films;501
1.6.10.6.1.3;16.6.1.3 Surface Imaging of HPMC–SA Films;502
1.6.10.6.2;16.6.2 AFM Force–Distance Experiments;503
1.6.10.6.2.1;16.6.2.1 Nanoadhesion Force;505
1.6.10.6.2.2;16.6.2.2 Capillary Contribution to Nanoadhesion Force;506
1.6.10.6.3;16.6.3 LFM Nanofriction Experiments;509
1.6.10.6.3.1;16.6.3.1 Nano Friction Force;510
1.6.10.6.3.2;16.6.3.2 Interplay Between Nanoadhesion and Nanofriction;512
1.6.10.7;16.7 Conclusions;515
1.6.10.8;References;516
1.6.11;Chapter 17 Surface Growth Processes Induced by AFM Debris Production. A New Observable for Nanowear;518
1.6.11.1;17.1 Introduction;518
1.6.11.2;17.2 Single Asperity Nanowear Experiments;520
1.6.11.2.1;17.2.1 Surface Growth Processes Induced by AFM Tip: Experimental Results;524
1.6.11.3;17.3 A Model for Wear Debris Production in a UHV AFM Scratching Test;526
1.6.11.3.1;17.3.1 Localisation of the Free Energy ChangesDue to Stressing AFM Tip;527
1.6.11.3.2;17.3.2 Flux of Adatoms Induced by the AFM Stressing Tip;529
1.6.11.3.3;17.3.3 Evaluation of Number Cluster Density via Nucleation Theory;532
1.6.11.4;17.4 Continuum Approach for the Surface Growth Induced by Abrasive Adatoms;536
1.6.11.5;17.5 Conclusions and Future Perspectives;542
1.6.11.6;References;543
1.6.12;Chapter 18 Frictional Stick-Slip Dynamics in a Deformable Potential;545
1.6.12.1;18.1 Introduction;545
1.6.12.2;18.2 The Model and Equation of motion;547
1.6.12.2.1;18.2.1 Potential and geometry;547
1.6.12.2.2;18.2.2 Frictional Force and Static Friction as a Function of the Shape Parameter;549
1.6.12.2.3;18.2.3 Equation of Motion;550
1.6.12.3;18.3 Numerical Results;552
1.6.12.3.1;18.3.1 Phase Space and Stroboscopic Observation;552
1.6.12.3.2;18.3.2 Stick-Slip Phenomena;553
1.6.12.3.3;18.3.3 Influence of the Shape Parameter on the Transition from Stick-Slip Motion to Modulated Sliding State;556
1.6.12.4;18.4 Pure Dry Friction;557
1.6.12.5;18.5 Conclusion;560
1.6.12.6;References;560
1.6.13;Chapter 19 Capillary Adhesion and Nanoscale Properties of Water;562
1.6.13.1;19.1 Introduction;562
1.6.13.2;19.2 Metastable Liquid Capillary Bridges;564
1.6.13.2.1;19.2.1 Negative Pressure in Water;564
1.6.13.2.2;19.2.2 Negative Pressure in Capillary Bridges in AFM Experiments;566
1.6.13.2.3;19.2.3 Disjoining Pressure;568
1.6.13.2.4;19.2.4 Calculating Pressure in Capillary Bridges;569
1.6.13.3;19.3 Capillarity-Induced Low-Temperature Boiling;572
1.6.13.4;19.4 Room Temperature Ice in Capillary Bridges;574
1.6.13.4.1;19.4.1 Humidity Dependence of the Adhesion Force;574
1.6.13.4.2;19.4.2 Ice in the Capillary Bridges;576
1.6.13.4.3;19.4.3 Water Phase Behavior Near a Surfaceand in Confinement;577
1.6.13.5;19.5 Conclusions;579
1.6.13.6;References;579
1.6.14;Chapter 20 On the Sensitivity of the Capillary Adhesion Force to the Surface Roughness;583
1.6.14.1;20.1 Introduction;583
1.6.14.2;20.2 Capillary Force Between Rough Surfaces;585
1.6.14.2.1;20.2.1 Shape of the Meniscus;586
1.6.14.2.2;20.2.2 Capillary Force;588
1.6.14.3;20.3 Case-Study: Two-Tiered Roughness;591
1.6.14.4;20.4 Experimental Data;592
1.6.14.5;20.5 Conclusions;595
1.6.14.6;References;596
1.7;Part III Industrial Applications;597
1.7.1;Chapter 21 Nanoimaging, Molecular Interaction, and Nanotemplating of Human Rhinovirus;598
1.7.1.1;21.1 Introduction;598
1.7.1.2;21.2 Contact Mode AFM Imaging;599
1.7.1.3;21.3 Dynamic Force Microscopy Imaging;602
1.7.1.3.1;21.3.1 Magnetic AC Mode (MAC mode) AFM Imaging;603
1.7.1.4;21.4 Introduction to Molecular RecognitionForce Spectroscopy;605
1.7.1.4.1;21.4.1 AFM Tip Chemistry;606
1.7.1.4.2;21.4.2 Applications of Molecular RecognitionForce Spectroscopy;609
1.7.1.4.3;21.4.3 Topography and Recognition Imaging;612
1.7.1.5;21.5 Nanolithography;614
1.7.1.5.1;21.5.1 Applications of Nanolithography;614
1.7.1.5.1.1;21.5.1.1 Fabrication of Nanoarrays;615
1.7.1.5.1.2;21.5.1.2 Nanoshaving;616
1.7.1.5.1.3;21.5.1.3 Nanografting;618
1.7.1.5.2;21.5.2 Native Protein Nanolithography;620
1.7.1.6;21.6 Imaging and Force Measurements of Virus–ReceptorInteractions;621
1.7.1.6.1;21.6.1 Virus Particle Immobilization and Characterization;622
1.7.1.6.2;21.6.2 Virus–Receptor Interaction Analyzed by Molecular Recognition Force Spectroscopy;628
1.7.1.6.2.1;21.6.2.1 Theoretical Description;629
1.7.1.6.2.2;21.6.2.2 Unbinding Force Measurements of HRV2–VLDLR Interaction;630
1.7.1.6.2.3;21.6.2.3 Dynamic Force Spectroscopy;632
1.7.1.6.2.4;21.6.2.4 Kinetic On-Rate Constant Obtained from Force Measurements;633
1.7.1.6.3;21.6.3 Virus Immobilization on Receptor Arrays;633
1.7.1.6.3.1;21.6.3.1 Receptor Arrays for Selective and Efficient Capturing of Viral Particles;634
1.7.1.6.3.2;21.6.3.2 Atomic Force Microscopy-Derived Nanoscale Chip for Detecting Human Pathogenic Viruses;636
1.7.1.7;References;642
1.7.2;Chapter 22 Biomimetic Tailoring of the Surface Properties of Polymers at the Nanoscale: Medical Applications;653
1.7.2.1;22.1 Introduction;653
1.7.2.1.1;22.1.1 Biomimetic Material Design Criteria for Biomedical Applications;653
1.7.2.1.2;22.1.2 Techniques for the Characterization of Surfaces at the Nanoscale;656
1.7.2.2;22.2 Realization of Biomimetic Surfaces by Coating Strategies;661
1.7.2.2.1;22.2.1 Generalities;661
1.7.2.2.2;22.2.2 Coating Methods;663
1.7.2.2.2.1;22.2.2.1 Langmuir–Blodgett Films;663
1.7.2.2.2.2;22.2.2.2 Self-Assembled Monolayers;666
1.7.2.2.2.3;22.2.2.3 Layer-by-Layer Coating;668
1.7.2.2.2.4;22.2.2.4 Surface Biomineralization;670
1.7.2.3;22.3 Realization of Biomimetic Surfaces by Chemical Modification;672
1.7.2.3.1;22.3.1 Introduction of Functional Groups on Polymer Surfaces by Irradiation and Chemical Techniques;674
1.7.2.3.1.1;22.3.1.1 Plasma-Surface Modification of Polymers;674
1.7.2.3.1.2;22.3.1.2 Plasma-Grafting Polymerization;675
1.7.2.3.1.3;22.3.1.3 UV Irradiation;675
1.7.2.3.1.4;22.3.1.4 Hydrolysis and Aminolysis;676
1.7.2.3.2;22.3.2 Immobilization of Bioactive and BiomimeticCompounds;676
1.7.2.3.2.1;22.3.2.1 Biomimetic Surfaces by Chemical Modification;676
1.7.2.3.3;22.3.3 Not-Conventional Approaches Towards Nanoscale Tailoring of Biomimetic Surfaces;677
1.7.2.4;22.4 Scanning Probe Techniques for Optical and Spectroscopic Characterization of Surfacesat High Resolution;680
1.7.2.4.1;22.4.1 Dynamic-Mode AFM for the Characterization of Organosilane Self-Assembled Monolayers;680
1.7.2.4.2;22.4.2 SNOM for Fluorescence Imaging;684
1.7.2.4.3;22.4.3 TERS for Chemical Mapping at the Nanoscale;688
1.7.2.5;22.5 Conclusions;692
1.7.2.6;References;692
1.7.3;Chapter 23 Conductive Atomic-Force Microscopy Investigation of Nanostructures in Microelectronics;698
1.7.3.1;23.1 Introduction;698
1.7.3.2;23.2 Technical Implementation of C-AFM;700
1.7.3.3;23.3 C-AFM to Study Gate Dielectrics;704
1.7.3.3.1;23.3.1 Local Current–Voltage Characteristics, Dielectric Breakdown, and Two-Dimensional Current Maps;705
1.7.3.3.2;23.3.2 Investigation of High-k Dielectrics;708
1.7.3.4;23.4 Conductivity Measurements of Phase-Separated Semiconductor Nanostructures;710
1.7.3.4.1;23.4.1 Exploration of Supported Nanowires and Nanodots;711
1.7.3.4.1.1;23.4.1.1 C-AFM of InAs NW on GaAs(110);711
1.7.3.4.1.2;23.4.1.2 C-AFM of InAs ND on GaAs(110);713
1.7.3.4.2;23.4.2 Investigation of Defects in Ternary Semiconductor Alloys;714
1.7.3.5;23.5 C-AFM Investigations of Nanorods;716
1.7.3.6;23.6 Application of C-AFM to Electroceramics;721
1.7.3.7;23.7 Outlook to Photoconductive AFM;723
1.7.3.8;23.8 Overall Summary and Perspectives;724
1.7.3.9;References;725
1.7.4;Chapter 24 Microscopic Electrical Characterization of Inorganic Semiconductor-Based Solar Cell Materials and Devices Using AFM-Based Techniques;729
1.7.4.1;24.1 Introduction;729
1.7.4.2;24.2 AFM-Based Nanoelectrical Characterization Techniques;731
1.7.4.2.1;24.2.1 Scanning Probe Force Microscopy;731
1.7.4.2.2;24.2.2 Scanning Capacitance Microscopy;734
1.7.4.2.3;24.2.3 Conductive AFM;737
1.7.4.3;24.3 Characterization of Junctions of Solar Cells;738
1.7.4.3.1;24.3.1 Junction Location Determination;738
1.7.4.3.1.1;24.3.1.1 Junction Identification in Multicrystalline Si Solar Cells ;739
1.7.4.3.1.2;24.3.1.2 Junction Backshift in a GaInNAs Cell ;743
1.7.4.3.1.3;24.3.1.3 Junction Location in Cu(In,Ga)Se2 Cells ;748
1.7.4.3.2;24.3.2 Electrical Potential and Field on Junctions;751
1.7.4.3.2.1;24.3.2.1 Electric Field Uniformity in a-Si:H and a-SiGe:H Cells ;752
1.7.4.3.2.2;24.3.2.2 Potential Profiles in III–V Single- and Multiple-Junction Cells ;756
1.7.4.4;24.4 Characterization of Grain Boundaries of Polycrystalline Materials;764
1.7.4.4.1;24.4.1 Carrier Depletion and Grain Misorientation on Individual Grain Boundaries of Polycrystalline Si Thin Films;765
1.7.4.4.1.1;24.4.1.1 Probing Carrier Depletion on Grain Boundaries of Polycrystalline Si Thin Films Using SCM ;765
1.7.4.4.1.2;24.4.1.2 Comparison of Carrier Depletion and Grain Misorientation on Individual Grain Boundaries of PolycrystallineSi Thin Films ;769
1.7.4.4.2;24.4.2 Electrical Potential Barrier on Grain Boundaries of Chalcopyrite Thin Films;771
1.7.4.4.2.1;24.4.2.1 Measurement of Electrical Potential on the GrainBoundaries ;772
1.7.4.4.2.2;24.4.2.2 Na Impurity in the Grain Boundaries ;775
1.7.4.5;24.5 Localized Structural and Electrical Propertiesof nc-Si:H and a-Si:H Thin Films and Devices;777
1.7.4.5.1;24.5.1 Localized Electrical Properties of a-Si:H and nc-Si:H Mixed-Phase Devices;778
1.7.4.5.1.1;24.5.1.1 Localized Photovoltage on a-Si:H and nc-Si:H Mixed-Phase Devices ;778
1.7.4.5.1.2;24.5.1.2 Effects of Light-Soaking and Thermal Annealing on Local Conductivity of nc-Si:H ;782
1.7.4.5.2;24.5.2 Doping Effects on nc-Si:H Phase Formation;785
1.7.4.5.2.1;24.5.2.1 Phosphorus and Boron Doping Effects ;786
1.7.4.5.2.2;24.5.2.2 Film Growth Mechanisms ;789
1.7.4.6;24.6 Summary;790
1.7.4.7;References;792
1.7.5;Chapter 25 Micro and Nanodevices for Thermoelectric Converters;797
1.7.5.1;25.1 Introduction;797
1.7.5.1.1;25.1.1 Macrodevices;798
1.7.5.1.2;25.1.2 Microdevices;799
1.7.5.1.3;25.1.3 Nanodevices and Superlattices;801
1.7.5.2;25.2 Thermoelectric Converters Models;803
1.7.5.2.1;25.2.1 Peltier Effect on Hot and Cold Sides;806
1.7.5.2.2;25.2.2 Joule Heating;807
1.7.5.3;25.3 Thin-Films Technology for Thermoelectric Materials;808
1.7.5.3.1;25.3.1 Bismuth and Antimony Tellurides Depositions;810
1.7.5.3.2;25.3.2 Optimization of Thermoelectric Properties;814
1.7.5.4;25.4 Superlattices for Fabrication of ThermoelectricConverters;815
1.7.5.4.1;25.4.1 Why Superlattices?;815
1.7.5.4.2;25.4.2 Materials and Properties;816
1.7.5.4.3;25.4.3 Fabrication;816
1.7.5.5;References;817
1.8;Index;819


Dr. Bharat Bhushan is an Ohio Eminent Scholar and The Howard D. Winbigler Professor in the Professor in the College of Engineering, and the Director of the Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLB
2
) at the Ohio State University, Columbus, Ohio. He holds two M.S., a Ph.D. in mechanical engineering/mechanics, an MBA, and three semi-honorary and honorary doctorates. His research interests include fundamental studies with a focus on scanning probe techniques in the interdisciplinary areas of bio/nanotribology, bio/nanomechanics and bio/nanomaterials characterization, and applications to bio/nanotechnology and biomimetics. He has authored 6 scientific books, more than 90 handbook chapters, more than 700 scientific papers (h factor – 42+), and more than 60 scientific reports, edited more than 45 books, and holds 17 U.S. and foreign patents. He is co-editor of Springer NanoScience and Technology Series and Microsystem Technologies. He has organized various international conferences and workshops. He is the recipient of numerous prestigious awards and international fellowships including the Alexander von Humboldt Research Prize for Senior Scientists, Max Planck Foundation Research Award for Outstanding Foreign Scientists, and the Fulbright Senior Scholar Award. He is a member of various professional societies, including the International Academy of Engineering (Russia). He has previously worked for various research labs including IBM Almaden Research Center, San Jose, CA. He has held visiting professor appointments at University of California at Berkeley, University of Cambridge, UK, Technical University Vienna, Austria, University of Paris, Orsay, ETH Zurich and EPFL Lausanne.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.