Bi | Mechatronics for Complex Products and Systems | Buch | 978-1-394-20959-0 | www.sack.de

Buch, Englisch, 704 Seiten, Format (B × H): 186 mm x 259 mm, Gewicht: 1142 g

Bi

Mechatronics for Complex Products and Systems

Project-Based Design Approaches for Robots, Cyber-Physical Systems, Digital Twins, and Other Emerging Technologies
1. Auflage 2025
ISBN: 978-1-394-20959-0
Verlag: Wiley

Project-Based Design Approaches for Robots, Cyber-Physical Systems, Digital Twins, and Other Emerging Technologies

Buch, Englisch, 704 Seiten, Format (B × H): 186 mm x 259 mm, Gewicht: 1142 g

ISBN: 978-1-394-20959-0
Verlag: Wiley


A project-based approach to designing mechatronic systems with new and emerging technologies

In Mechatronics for Complex Products and Systems: Project-Based Designs for Cyber-Physical Systems, Digital Twins, and Other Emerging Technologies, distinguished researcher Dr. Zhuming Bi delivers an expert discussion of real-world mechatronics skills that students will need in their engineering careers.

The book explains the characteristics and innovation principles underlying mechatronic systems, including modularization, adaptability, predictability, sustainability, and concurrent engineering. A mechatronic system is decomposed into a set of mechatronic functional modules such as power systems, actuating systems, sensing systems, systems of signal conditioning and processing, and control systems.

The author also offers: - A thorough introduction from classic integration of mechanical, electronic and electrical systems to more complex products and systems, including cyber-physical systems, robotics, human-robot interactions, digital twins, and Internet of Things applications
- Insightful project assignments that help reinforce a practical understanding of a learning subject
- Practical discussions of real-world engineering problems
- Comprehensive guidance on how to select the right type of sensors, motors, and controllers for a variety of mechatronic functional modules

Perfect for advanced undergraduate and graduate students of mechatronics, Mechatronics for Complex Products and Systems will also benefit professional engineers working on interdisciplinary projects enabled by digital technologies, Internet of Things (IoT), and Artificial Intelligence (AI).

Bi Mechatronics for Complex Products and Systems jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xvii

About the Companion Website xix

1 Introduction 1

1.1 Introduction 1

1.2 Growing Complexity of Engineering Designs 1

1.2.1 Products 3

1.2.2 Manufacturing Technologies 5

1.2.3 Business Environments 6

1.2.4 Engineering Design 6

1.3 Integrated Engineering Design 7

1.4 Mechatronics for Multi- or Interdisciplinary Designs 9

1.5 Mechatronic Design Examples 11

1.5.1 Development of Football Robot Team 11

1.5.2 Reusing Robots to Unload Heat Sinks Automatically 12

1.5.3 Rebuilding Rail Test Machine 14

1.5.4 Testing of Electric Hardness 16

1.5.5 Valve Needle Assembly Station 16

1.5.6 Ejecting Engine Fans from Performance Tester 18

1.5.7 Demonstrator of Automated Spacer Removals in Truck Assembly Line 19

1.6 Group Technologies (GTs) for Mechatronic Designs 21

1.7 Mechatronics and Mechatronic Functional Modules (MFMs) 22

1.8 Mechatronic Design Methodologies 24

1.9 Organization of the Book 25

1.10 Summary 26

Problems 28

References 28

2 Mechatronic Designs – Innovations, Theories, and Methods 31

2.1 Innovative Thinking 31

2.2 Theory of Inventive Problem-Solving (TRIZ) as Tactic Methodology 34

2.3 Innovations of Mechatronic Systems 39

2.3.1 Modularization 39

2.3.2 Integrability 41

2.3.3 Coupled Discipline Modeling 42

2.3.4 Concurrent Design 43

2.3.5 Decentralized Controls 45

2.3.6 Event-Driven Automation 46

2.3.7 Adaptability and Re-configurability 46

2.3.8 Predictability 48

2.3.9 System Resilience 49

2.3.10 Continuous Adaptation (CA) 50

2.4 Architecture of Mechatronic Systems 51

2.5 Design of Mechatronic Systems 54

2.6 Mechatronic Design Methodologies 57

2.6.1 System Modeling Language (SysML) 58

2.6.2 Model-Based System Engineering (MBSE) 59

2.6.3 Axiomatic Design Theory (ADT) 61

2.6.4 Concurrent Design Optimization (CDO) 63

2.6.5 Virtual Verification and Validation (VVV) 65

2.7 Project-Based Mechatronic Design (PBMD) 65

2.7.1 Existing Assistive Evacuating Technologies 66

2.7.2 Proposed Assistive Evacuation Device 69

2.7.3 Main Functional Requirements from Use Cases 69

2.7.4 Project-Based Mechatronic Designs 72

2.7.4.1 Folding and Unfolding Mechanism 72

2.7.4.2 Reaction Forces on Tracks for Structural Elements 72

2.7.4.3 Motor for Lifting Mechanism 74

2.7.4.4 Control of Evacuation Device 76

2.7.4.5 PBMD in Mechatronic Design 77

2.8 Summary 77

Problems 78

References 81

3 Power Generation, Storage, Supply and Transmission 87

3.1 Introduction 87

3.2 Energy, Work, and Power 87

3.3 Energy Source 90

3.4 Driving Components – Functional Requirements (FRs) 91

3.5 Power Transmission 93

3.5.1 Functional Requirements (FRs) 94

3.5.2 Machine Elements for Power Transmission 95

3.5.3 Types of Machine Elements 95

3.5.4 Procedure in Designing or Selecting Machine Elements 95

3.5.5 Machine Elements in Mechatronic Systems 98

3.5.6 Mechanical Power Transmission Examples 98

3.6 Power Generation 100

3.6.1 Internal Combustion (IC) Generator 102

3.6.2 Solar Power Generator 103

3.6.3 Wind Turbine Generator 105

3.6.4 Geothermal Generator 105

3.6.5 Other Generators 106

3.6.6 Selection of Power Source for Mechatronic System 107

3.7 Requirements of Power Supplies and Storages 109

3.7.1 Requirements of Power Supplies 109

3.7.2 Classification of Energy Storage Systems 111

3.7.3 Flywheel Energy Storage System (FESS) 112

3.7.4 Pumped Hydro Energy Storage (PHES) 114

3.7.5 Compressed Air Energy Storage (CAES) 115

3.7.6 Gravity Energy Storage (GES) 115

3.7.7 Electrical Energy Storage (EES) 116

3.7.8 Thermal Energy Storage (TES) 118

3.7.9 Comparison of Different Energy Storages 120

3.8 Selection of Power Supplies 122

3.9 Summary 122

Problems 122

References 123

4 Actuating Systems 127

4.1 Introduction 127

4.2 Functional Requirements (FRs) 129

4.3 Design Variables (DVs) 132

4.4 Basics of Energy Conversion 135

4.4.1 Mechanical Energy Conversion 135

4.4.2 Electromechanical Energy Conversion 140

4.4.3 Thermomechanical Energy Conversion 148

4.4.4 Electro-stimulated Materials 149

4.4.5 Magneto-rheological Fluid Energy Conversion 151

4.4.6 Nano-level Energy Conversion 152

4.5 Main Components 153

4.6 Valve and Electric Actuators 154

4.6.1 Valve Actuators 155

4.6.2 Electric Actuators and Motors 157

4.6.3 Selection of Motors 160

4.7 Summary 161

Problems 161

References 162

5 Sensing Systems 165

5.1 Introduction 165

5.2 Sensors, Actuators, and Transducers 169

5.3 Classifications 170

5.3.1 Types of Quantities to be Measured 170

5.3.2 Requirements Related to Measurement 171

5.3.3 Specifications Related to Measurement 171

5.4 Working Principles 173

5.4.1 Hooke’s Law 173

5.4.2 Ohm’s Law 175

5.4.3 Photoconductivity 176

5.4.4 Hall Effect 177

5.4.5 Faraday’s Law of Induction 178

5.4.6 Curie–Weiss Law 179

5.4.7 Time of Flight (ToF) 181

5.5 Types of Physical Quantities 182

5.5.1 Displacement, Position, and Proximity 182

5.5.2 Velocity 184

5.5.3 Acceleration 186

5.5.4 Force 188

5.5.4.1 Direct Contact Sensors 188

5.5.4.2 Piezoelectric Sensors 189

5.5.4.3 Conventional Force Sensors 190

5.5.5 Pressure 191

5.5.6 Contacts 193

5.5.7 Temperature 195

5.5.8 Chemical Particles 197

5.6 Optical Encoders 199

5.6.1 Resolutions 199

5.6.2 Decoding 202

5.7 Sensors in MEMS 203

5.8 Summary 205

Problems 205

References 207

6 Bridging Physical and Cyber Systems 209

6.1 Introduction 209

6.2 Characteristics of Signals 209

6.2.1 Analog Signals 209

6.2.2 Digital Signals 211

6.3 Conversions of Digital and Analog Signals 212

6.4 Basic Electronic Elements for DSP 213

6.4.1 Operational Amplifiers (Op-Amps) 213

6.4.2 Comparators 216

6.5 Digitization 217

6.5.1 Sampling 217

6.5.2 Quantizing 220

6.5.3 Sampling and Quantizing in Analog-to-Digital Conversion (ADC) 221

6.6 Analog-to-Digital Conversion (ADC) 225

6.6.1 Integrating ADC 226

6.6.2 Flash Converter 227

6.6.3 Successive Approximation 228

6.7 Holding Process in Sampling 236

6.8 Digital-to-Analog Conversion (DAC) 237

6.8.1 Weighted Resistor DAC 237

6.8.2 R-2R Ladder DAC 239

6.8.3 Quantization Noise 240

6.9 Summary 241

Problems 241

References 242

7 Signal Conditioning and Processing 245

7.1 Introduction 245

7.2 Basic Concepts in Electronic Circuits 245

7.2.1 Charge, Current, Voltage, and Power 245

7.2.2 Resistor, Capacitor, and Inductor 248

7.2.3 Input Loading and Output Loading 250

7.2.4 Basic Types of Signals 251

7.2.5 Main Parameters of Periodical Signals 254

7.2.6 Amplitude and Phase Changes 254

7.2.7 Wheatstone Bridges 257

7.3 Signal Cleaning 259

7.4 Signal Isolation 260

7.4.1 Optical Isolation by Light-Emitting Diodes (LEDs) 260

7.4.2 Capacitive Isolation by Capacitor 261

7.4.3 Inductive Isolation by Inductor 261

7.5 Signal Transmission 262

7.5.1 Switches 262

7.5.2 Multiplexer 262

7.5.3 Protection from High Voltage and Current 264

7.5.4 Modulation/Demodulation 265

7.6 Signal Conditioning 266

7.6.1 Amplification 266

7.6.2 Attenuation 271

7.6.3 Filtering 271

7.6.4 Linearization 275

7.6.5 Conditioning Digital Signals 275

7.6.6 Signal Clipping 277

7.7 Signal Clamping 277

7.8 Summary 278

Problems 278

References 279

8 System Controls 281

8.1 Basics of Control Systems 281

8.1.1 Complexity of Control Problem 281

8.1.2 Types of Control Problems 283

8.1.3 Architecture of Control Systems 284

8.1.4 Design of Control Systems 285

8.2 Control Theory 286

8.2.1 Open-Loop Control Versus Closed-Loop Control 286

8.2.2 Process Control Versus Motion Control 287

8.2.3 Steady Response Versus Transient Response 288

8.2.4 Transfer Functions 288

8.2.5 Orders of Control Systems 292

8.2.6 Stability Analysis 295

8.2.7 Accuracy of Control Systems 299

8.2.8 Classification of Control Systems 302

8.2.9 Frequency Responses 303

8.3 Proportional–Integral–Derivative (PID) Controls 305

8.4 Analog and Digital Implementation of PID Controllers 307

8.5 Advanced Controls 309

8.6 Intelligent Controls 309

8.6.1 Fuzzy Logic 310

8.6.2 Artificial Neural Network (ANN) 310

8.7 Design of Control System 312

8.7.1 Microcontrollers 313

8.7.2 Digital Signal Processing (DSP) 313

8.7.3 Field Programmable Gate Arrays (FPGA) 315

8.7.4 Microcomputers 316

8.7.5 Programmable Logic Controller (PLC) 316

8.8 Programming in PLC 318

8.8.1 Data Structure and Flow 318

8.8.2 Operating Cycle 319

8.8.3 I/O Modules and Addresses 319

8.8.4 Elements of Logic Control 322

8.8.5 Ladder Logic Diagrams 325

8.8.6 Timers and Counters 327

8.8.7 Sequencers 328

8.9 Summary 330

Problems 331

References 333

9 Digital Twins (DT-I), Digital Triads (DT-II), and Internet of Digital Triads Things (IoDTT) 335

9.1 Introduction 335

9.2 Digital Twins (DT-I) 338

9.3 Enabling Technologies 339

9.3.1 Data Acquisition 339

9.3.2 Modeling and Simulation 340

9.3.3 Communication Technologies 340

9.3.4 Cloud Technologies 340

9.3.5 Big Data Analytics (BDA) 342

9.4 From Digital to Physical Twins by Manufacturing 342

9.5 DT-Is in Manufacturing 343

9.5.1 System Digitization 347

9.5.2 Interactions of Physical and Digital Worlds 348

9.5.3 Historical Development of DT-I 349

9.5.4 Communication and Integration 351

9.5.5 System Architecture 353

9.6 Limitations of DT-Is 354

9.7 Advanced Attributes of Digital Entities in Manufacturing 355

9.8 Concept of Digital Triad (DT-II) 356

9.9 The Internet of Digital Triads Things (IoDTT) 360

9.10 DT-Is and DT-IIs in Sustainable Mechatronic Systems 362

9.10.1 Monitoring and Controlling 362

9.10.2 Data-Driven Decision-Making 364

9.10.3 Fault Detections 366

9.10.4 Predication of Fatigue Life 368

9.10.5 Virtual Verification and Validation (V and V) 370

9.11 Summary 371

Problems 371

References 374

10 Cyber-Physical Systems 379

10.1 Introduction 379

10.2 Characteristics of CPSs 382

10.3 Basic Features of Cyber System of CPS 384

10.3.1 Reactive Computation 385

10.3.2 Parallel Computing 385

10.3.3 Feedback Controls 385

10.3.4 Realtime-Ness 385

10.3.5 Dependability, Reliability, and Safety Assurance 386

10.3.6 Biological Intelligence 387

10.3.7 Hybrid Systems 387

10.3.8 Embedded Computation 387

10.3.9 Standards of Cyber Systems 387

10.4 Design of CPSs 387

10.5 Mathematical Modeling 388

10.5.1 Modeling Continuous Dynamics 391

10.5.2 Discrete Event Dynamic System (DEDS) 396

10.5.3 Hybrid Modeling 398

10.5.4 State Machines 400

10.6 Development Standards 403

10.7 Model-Based System Engineering (MBSE) 404

10.7.1 Modeling in MBSE 404

10.7.2 Design Stages in MBSE 405

10.7.3 Acausality Modeling by Modelica 406

10.7.4 Programming in Modelica 409

10.7.5 Formal Semantics 412

10.7.6 Verification and Validation (V&V) 414

10.8 Summary 415

Problems 416

References 418

11 Internet of Things 421

11.1 Introduction 421

11.1.1 IoT Concepts 422

11.1.2 Smart Things 424

11.1.3 Communication Protocols 425

11.2 Characteristics of IoT-Enabled Systems 427

11.3 Importance of IoT in Mechatronics 428

11.4 Data Flows in IoT-Enabled Systems 431

11.5 IoT-Enabled Capabilities 432

11.5.1 Interactions 433

11.5.2 Big Data Analytics (BDA) 435

11.5.3 Digital Manufacturing (DM) 435

11.6 Project-Based IoT-Enabled System Development 438

11.6.1 Ubiquitous Sensing 439

11.6.2 Fusing and Integrating Data from Heterogeneous Sources 439

11.6.3 Methods of Coping with Big Data 440

11.6.4 Surveillance and Data Visualization 441

11.6.5 Workflow Composition 441

11.6.6 Standardization of Specifications 444

11.6.7 Data Acquisition, Classification, and Utilization 444

11.7 Summary and Conclusion 445

Problems 447

References 447

12 Robotics 451

12.1 Introduction 451

12.2 Classifications 454

12.3 Basic Terminologies in Robotics 456

12.3.1 Mechanical Structure 457

12.3.2 Degrees of Freedom (DOF) 458

12.3.3 Workspaces 462

12.3.4 Modeling and Simulation 464

12.3.5 Accuracy, Precision, and Calibration 464

12.3.6 Other Specifications 465

12.4 Kinematic Modeling 466

12.4.1 Positions of Points, Links, and Bodies in 2D and 3D Space 466

12.4.2 Motions of Particles, Links, and Bodies 468

12.4.3 Vector-Loop Method for Motion Analysis of Plane Mechanism 473

12.4.3.1 Kinematic Parameters and Variables 477

12.4.3.2 Inverse Kinematics 477

12.4.3.3 Forward Kinematics 478

12.4.4 Denavit–Hartenberg (D–H) Notation 479

12.4.5 Jacobian Matrix for Velocity Relations 481

12.5 Dynamic Modeling 491

12.5.1 Inertia and Moments of Inertia 491

12.5.2 Newton–Euler Formulation 493

12.5.3 Lagrangian Method 498

12.6 Kinematic and Dynamics Modeling in Virtual Design 500

12.6.1 Motion Simulation 502

12.6.2 Model Preparation 502

12.6.3 Creation of Simulation Model 504

12.6.4 Define Motion Variables 504

12.6.5 Setting Simulation Parameters 506

12.6.6 Run Simulation and Visualize Motion 506

12.6.7 Analyze Simulation Data 507

12.6.8 Structural Simulation Using Motion Loads 508

12.6.9 Summary on Kinematic and Dynamic Modeling 510

12.7 Mobile Robots 511

12.7.1 Three-Wheeled Robots 514

12.7.2 Four-Wheeled Robots 515

12.7.3 Unmanned Aerial Vehicles (UAVs) 516

12.8 Robotic Programming 519

12.9 Summary 521

Problems 521

References 524

13 End-Effectors 527

13.1 Introduction 527

13.2 Grasping Theory 528

13.2.1 Contacts on Object 528

13.2.2 Motions and Forces 530

13.2.3 Frictions 531

13.2.4 Grasping Model 533

13.2.5 Form Closure 534

13.2.6 Force Closure 536

13.2.7 Quality of Grasping 537

13.3 Mechatronic Design of End-Effectors 537

13.3.1 Mechanical and Actuating Components 538

13.3.2 Sensing Components 541

13.3.3 Control Components 542

13.4 Evaluation of Grasping Performance 544

13.5 Grasping Configurations 545

13.6 Types of End-Effectors 546

13.6.1 Types of Grippers 546

13.6.2 Types of Processing Tools 548

13.6.3 Multifunctional Tools 549

13.6.3.1 Concepts 550

13.6.3.2 Classification 550

13.6.3.3 Advantages and Disadvantages 554

13.6.3.4 Selection Principles 556

13.6.3.5 Development Trends 556

13.7 Main Factors in Designing an End-Effector 558

13.8 Computer-Aided Design Tools for End-Effectors 560

13.9 Summary 560

Problems 560

References 561

14 Metaverses for Sustainability Mechatronic Systems 565

14.1 Introduction 565

14.2 FRs of Sustainable Mechatronic Systems 566

14.2.1 Scalability, Accessibility, Security, Privacy, and Legal Issues 568

14.2.2 First-Time-Right from Virtual to Physical World 568

14.2.3 Ubiquitous Data and Computing 568

14.2.4 Diagonalizability, Predictability, and Adaptability 569

14.2.5 Human Intelligence for Uncertainty and Changes 570

14.2.6 Data-Driven Decision-Making Supports 571

14.3 Metaverse and Relevant Technologies 573

14.3.1 Architecture or Framework 574

14.3.2 Virtual Reality (VR), Augmented Reality (AR), Mixed Reality (MR), and Extended Reality (ER) 576

14.3.3 Digital Twins (DTs), Cyber-Physical Systems 578

14.3.4 Internet of Things (IoT) and Edge Computing 579

14.3.5 Big Data Analytics (BDA) and Cloud Computing (CC) 581

14.3.6 Blockchain Technologies (BCTs) 581

14.3.7 Artificial Intelligence (AI) 583

14.3.8 Human–Machine Interactions (HMI) 585

14.3.9 Data-Driven Decision-Making Systems 586

14.4 Metaverses for Sustainability 587

14.4.1 Metaverses to Deal with Changes and Uncertainties 588

14.4.2 Sustainable Manufacturing 590

14.4.3 Framework of Metaverse Use Cases 590

14.4.4 Metaverses for Remote Access 592

14.5 Summary and Future Work 593

Problems 593

References 594

15 Human Cyber-Physical Systems (HCPS) 603

15.1 Introduction 603

15.2 Humans’ Roles in CPS 605

15.3 Enabling Technologies 608

15.4 Human–Machine Interactions (HMI) 610

15.4.1 Collaborative Robots 610

15.4.2 Types of HMIs 612

15.4.3 Collaborative Machines in Manufacturing 613

15.4.4 Critical Requirements of Cobots 613

15.4.5 Safety Assurance Mechanisms for Cobots 616

15.4.5.1 Safety-Rated Monitored Stop (SRMS) 616

15.4.5.2 Hand Guiding (HG) 617

15.4.5.3 Speed and Separation Monitoring (SSM) 618

15.4.5.4 Power and Force Limiting (PFL) 618

15.4.6 Cobotic Systems 618

15.4.7 End-Effectors of Cobots 620

15.4.7.1 Affordable Force Monitoring 620

15.4.7.2 Ergonomic Protection of Grippers 621

15.4.8 Safety Assurance in HCPSs 622

15.5 Example of Assistive Technologies 622

15.5.1 Cobots in Healthcare 622

15.5.2 Conceptual Design of Cobot 623

15.5.3 Kinematic Model 624

15.5.4 Motion for Arbitrary Explicit Trajectory 625

15.5.5 Motions of Omniwheels 626

15.5.6 Dynamic Control Model 626

15.5.6.1 Analyses of Force on Omniwheels 627

15.5.6.2 Analyses of Force on Cobot Platform 628

15.5.6.3 Constraints to Maintain Contacts to Ground 629

15.5.6.4 Strategies of Cobot Controls 630

15.5.7 Simulation 631

15.5.8 Summary of HCPS as Assistive Technologies 632

15.6 Brain–Computer Interfaces (BCI) for Supervisory Controls 634

15.6.1 Unmanned Aerial Vehicles (UAVs) 634

15.6.2 UAV Controls 635

15.6.3 BCI for Effective HMI 636

15.6.4 Development of BCIs 638

15.6.4.1 Brain Signals 639

15.6.4.2 Data Acquisition 640

15.6.4.3 Feature Classification and Detection 642

15.6.5 BCI Development Platform 645

15.7 Summary 648

Problems 649

References 649

Index 657


Zhuming Bi, PhD, is a Professor of Mechanical Engineering in the Department of Civil and Mechanical Engineering and Harris Chair in Wireless Communication and Applied Research at Purdue University Fort Wayne. He was a 2023-2024 Fulbright-Nokia Distinguished Chair in Information Communications Technologies (ICT). He has previously held positions at the Nanjing University of Science and Technology (China), Northern Ireland Technology Center (UK), the National Research Council of Canada (Canada), National Institute of Standards and Technology (USA), and Lappeenranta University of Technology (Finland).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.