E-Book, Englisch, 516 Seiten
Bibb / Eggbeer / Paterson Medical Modelling
2. Auflage 2014
ISBN: 978-1-78242-313-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
The Application of Advanced Design and Rapid Prototyping Techniques in Medicine
E-Book, Englisch, 516 Seiten
Reihe: Woodhead Publishing Series in Biomaterials
ISBN: 978-1-78242-313-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Prof Richard Bibb is a Professor of Medical Applications of Design at Loughborough University, UK. He graduated from Brunel University, UK (1995) with a BSc (Hons) in Industrial Design. He then ?undertook doctoral research in Rapid Prototyping at the National Centre for Product Design and Development Research (PDR), Cardiff Metropolitan University, UK. This study involved the development of a computerised Rapid Prototyping selection system for designers in small companies. After gaining his PhD in 1999 he established the Medical Applications Group at PDR to conduct collaborative applied research in medical applications of design technologies such as CAD and 3D Printing. He rose to the position of Director of Research ?for PDR before moving to Loughborough University in 2008.? In 2014 he established the Digital Design & Fabrication research lab (DDF) which focuses on ?advanced computer-aided design (CAD), 3D ?Printing and Additive Manufacturing technologies. Professor Bibb's personal research focus is the application of advanced product design and development ?technologies in medicine, surgery, rehabilitation and assistive technology.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Front Matter;4
3;Contents;6
4;Woodhead Publishing Series in Biomaterials;10
5;Preface;14
6;Acknowledgements;16
7;1 - Introduction;18
7.1;1.1 Background;18
7.2;1.2 The human form;19
7.3;1.3 Basic anatomical terminology;20
7.4;1.4 Technical terminology;22
8;2 - Medical imaging;24
8.1;2.1 Introduction to medical imaging;24
8.2;2.2 Computed tomography (CT);25
8.3;2.3 Cone beam CT (CBCT);34
8.4;2.4 Magnetic resonance (MR);37
8.5;2.5 Noncontact surface scanning;41
8.6;2.6 Medical scan data;47
8.7;2.7 Point cloud data;49
8.8;2.8 Media;49
8.9;References;50
8.10;Recommended reading;50
9;3 - Working with medical scan data;52
9.1;3.1 Pixel data operations;52
9.2;3.2 Using CT data: a worked example;56
9.3;3.3 Point cloud data operations;61
9.4;3.4 Two-dimensional formats;65
9.5;3.5 Pseudo 3D formats;65
9.6;3.6 True 3D formats;68
9.7;3.7 File management and exchange;75
10;4 - Physical reproduction;82
10.1;4.1 Background to rapid prototyping;82
10.2;4.2 Stereolithography;92
10.3;4.3 Digital light processing;96
10.4;4.4 Fused deposition modelling;98
10.5;4.5 Laser sintering;101
10.6;4.6 Powder bed 3D printing;103
10.7;4.7 Material jetting technology;105
10.8;4.8 Laminated object manufacture;110
10.9;4.9 Computer numerical controlled machining;110
10.10;4.10 Cleaning and sterilising medical models;112
11;5 - Case Studies;116
11.1;Introduction;116
11.2;Implementation;118
11.3;Acknowledgements;118
11.4;5.1.1 Introduction;118
11.5;5.1.2 CT guidelines for medical modelling;120
11.6;5.1.3 Conclusion;124
11.7;Acknowledgements;124
11.8;References;125
11.9;5.2 Implementation case study 2: the development of a collaborative medical modelling service – organisational and technical con...;127
11.10;Acknowledgements;127
11.11;5.2.1 Introduction;127
11.12;5.2.2 Aims of medical modelling collaboration;128
11.13;5.2.3 Implementation;129
11.14;5.2.4 Discussion;132
11.15;5.2.5 Conclusions;135
11.16;5.2.6 Update;136
11.17;References;136
11.18;5.3 Implementation case study 3: medical rapid prototyping technologies – state of the art and current limitations for applicati...;137
11.19;Acknowledgements;137
11.20;5.3.1 Introduction;137
11.21;5.3.2 3D image acquisition and processing for MRP;138
11.22;5.3.3 RP technologies;139
11.23;5.3.4 Medical rapid prototyped model artefacts;142
11.24;5.3.5 Conclusion;149
11.25;5.3.6 Update;150
11.26;References;150
12;Surgical applications;154
12.1;5.4 Surgical applications case study 1: planning osseointegrated implants using computer-aided design and rapid prototyping;154
12.2;Acknowledgments;154
12.3;5.4.1 Introduction;154
12.4;5.4.2 Proposed approach;155
12.5;5.4.3 Scanning problems;155
12.6;5.4.4 Software problems;156
12.7;5.4.5 Illustrative case study;157
12.8;5.4.6 Results;159
12.9;5.4.7 Benefits and future development;160
12.10;5.4.8 Update;161
12.11;References;161
12.12;5.5 Surgical applications case study 2: rapid manufacture of custom-fit surgical guides;162
12.13;Acknowledgments;162
12.14;5.5.1 Introduction;162
12.15;5.5.2 Methods;163
12.16;5.5.3 Case study;165
12.17;5.5.4 Results;167
12.18;5.5.5 Discussion;168
12.19;5.5.6 Conclusions;168
12.20;5.5.7 Update;169
12.21;References;170
12.22;5.6 Surgical applications case study 3: use of a reconstructed three-dimensional solid model from computed tomography to aid in ...;172
12.23;Acknowledgments;172
12.24;5.6.1 Introduction;172
12.25;5.6.2 Materials and methods;172
12.26;5.6.3 Postoperative management and follow-up;175
12.27;5.6.4 Discussion;175
12.28;References;176
12.29;5.7 Surgical applications case study 4: custom-made titanium orbital floor prosthesis in reconstruction for orbital floor fractu...;177
12.30;Acknowledgments;177
12.31;5.7.1 Introduction;177
12.32;5.7.2 Technique;178
12.33;5.7.3 Case report;179
12.34;5.7.4 Conclusion;182
12.35;References;182
12.36;5.8 Surgical applications case study 5: use of three-dimensional technology in the multidisciplinary management of facial dispro...;184
12.37;Acknowledgments;184
12.38;5.8.1 Introduction;184
12.39;5.8.2 Materials and methods;184
12.40;5.8.3 Results;186
12.41;5.8.4 Discussion;188
12.42;References;188
12.43;5.9 Surgical applications case study 6: appropriate approach to computer-aided design and manufacture of reconstructive implants...;190
12.44;Acknowledgments;190
12.45;5.9.1 Introduction;190
12.46;5.9.2 Case 1: orbital rim augmentation implant;190
12.47;5.9.3 Case 2: orbital floor implant incorporating placement guide;195
12.48;5.9.3.1 Materials and methods;196
12.49;5.9.4 Case 3: multipart reconstruction;199
12.50;5.9.4.1 Materials and methods;199
12.51;5.9.5 Case 4: posttraumatic zygomatic osteotomy and orbital floor reconstruction;203
12.52;References;209
12.53;5.10 Surgical applications case study 7: computer-aided planning and additive manufacture for complex, mid-face osteotomies;211
12.54;Acknowledgments;211
12.55;5.10.1 Introduction;211
12.56;5.10.2 Methods;212
12.57;5.10.3 Results;215
12.58;5.10.4 Discussion;216
12.59;5.10.5 Conclusions;217
12.60;References;217
13;Maxillofacial rehabilitation;218
13.1;Acknowledgments;218
13.2;5.11.1 Introduction;218
13.3;5.11.2 Methods;219
13.4;5.11.3 Results;223
13.5;5.11.4 Update;224
13.6;References;224
13.7;5.12 Maxillofacial rehabilitation case study 2: producing burns therapy conformers using noncontact scanning and rapid prototyp...;225
13.8;Acknowledgements;225
13.9;5.12.1 Introduction;225
13.10;5.12.2 Methods;226
13.11;5.12.3 Results;230
13.12;5.12.4 Discussion;231
13.13;5.12.5 Conclusions;231
13.14;References;232
13.15;5.13 Maxillofacial rehabilitation case study 3: an appropriate approach to computer-aided design and manufacture of cranioplas...;233
13.16;Acknowledgements;233
13.17;5.13.1 Introduction;233
13.18;5.13.2 Initial case;234
13.19;5.13.3 Second case;239
13.20;5.13.4 Third case: press tool design;240
13.21;5.13.5 Fourth case: implant design for AM fabrication;242
13.22;5.13.6 Future development and benefits;243
13.23;References;244
13.24;5.14 Maxillofacial rehabilitation case study 4: evaluation of advanced technologies in the design and manufacture of an implant ...;245
13.25;Acknowledgements;245
13.26;5.14.1 Introduction;245
13.27;5.14.2 Existing facial prosthetics technique;246
13.28;5.14.3 Review of advanced technologies in facial prosthetics;246
13.29;5.14.4 Case 1;248
13.30;5.14.5 Case 2;250
13.31;5.14.6 Results;254
13.32;5.14.7 Discussion;254
13.33;5.14.8 Conclusions;255
13.34;References;256
13.35;5.15 Maxillofacial rehabilitation case study 5: rapid prototyping technologies in soft-tissue facial prosthetics – current state...;258
13.36;Acknowledgements;258
13.37;5.15.1 Introduction;258
13.38;5.15.2 Methodology;259
13.39;5.15.3 Summary of case studies;260
13.40;5.15.4 Discussion;265
13.41;5.15.5 RP&M Specification;269
13.42;5.15.6 Conclusions;270
13.43;References;271
13.44;5.16 Maxillofacial rehabilitation case study 6: evaluation of direct and indirect additive manufacture of maxillofacial prosthes...;273
13.45;Acknowledgements;273
13.46;5.16.1 Introduction;273
13.47;5.16.2 Methods;274
13.48;5.16.3 Results;283
13.49;5.16.4 Discussion;286
13.50;5.16.5 Conclusions;287
13.51;References;288
13.52;5.17 Maxillofacial rehabilitation case study 7: computer-aided methods in bespoke breast prosthesis design and fabrication;290
13.53;Acknowledgements;290
13.54;5.17.1 Introduction;290
13.55;5.17.2 Methods;291
13.56;5.17.3 Discussion;298
13.57;5.17.4 Conclusions;298
13.58;References;299
14;Orthotic rehabilitation applications;300
14.1;Acknowledgements;300
14.2;5.18.1 Introduction;300
14.3;5.18.2 Data acquisition methods;301
14.4;5.18.3 Conclusion and future work;306
14.5;Acknowledgements;308
14.6;References;308
14.7;5.19 Orthotic rehabilitation applications case study 2: comparison of additive manufacturing systems for the design and fabric...;311
14.8;Acknowledgements;311
14.9;5.19.1 Introduction;311
14.10;5.19.2 Aim and objectives;316
14.11;5.19.3 Method;316
14.12;5.19.4 Results;321
14.13;5.19.5 Conclusions and future work;330
14.14;Acknowledgements;333
14.15;References;333
14.16;5.20 Orthotic rehabilitation applications case study 3: evaluation of a digitised splinting approach with multiple-material func...;336
14.17;Acknowledgements;336
14.18;5.20.1 Introduction;336
14.19;5.20.2 Research aim and objectives;339
14.20;5.20.3 Methods;340
14.21;5.20.4 Results and discussion;347
14.22;5.20.5 Future work;348
14.23;Acknowledgements;349
14.24;References;349
14.25;5.21 Orthotic rehabilitation applications case study 4: digitisation of the splinting process – development of a CAD strategy fo...;352
14.26;Acknowledgements;352
14.27;5.21.1 Introduction;352
14.28;5.21.2 Current splinting techniques;353
14.29;5.21.3 Experimental procedures;355
14.30;5.21.4 Results;357
14.31;5.21.5 Conclusion;359
14.32;Acknowledgements;360
14.33;References;360
14.34;5.22 Orthotic rehabilitation applications case study 5: evaluation of a refined 3D CAD workflow for upper extremity splint desig...;361
14.35;Acknowledgements;361
14.36;5.22.1 Introduction;361
14.37;5.22.2 Method;363
14.38;5.22.3 Results and discussion;366
14.39;5.22.4 Conclusions and further work;366
14.40;Acknowledgements;367
14.41;References;367
15;Dental applications;370
15.1;5.23 Dental applications case study 1: the computer-aided design and rapid prototyping fabrication of removable partial denture ...;370
15.2;Acknowledgments;370
15.3;5.23.1 Introduction;370
15.4;5.23.2 Materials and methods;371
15.5;5.23.3 Conclusions;379
15.6;References;380
15.7;5.24 Dental applications case study 2: trial fitting of an RDP framework made using CAD and RP techniques;381
15.8;Acknowledgments;381
15.9;5.24.1 Introduction;381
15.10;5.24.2 Methods;381
15.11;5.24.3 Results;385
15.12;5.24.4 Discussion;386
15.13;5.24.5 Conclusions;387
15.14;Acknowledgments;387
15.15;References;387
15.16;5.25 Dental applications case study 3: direct additive manufacture of RPD frameworks;388
15.17;Acknowledgments;388
15.18;5.25.1 Introduction;388
15.19;5.25.2 Methodology;388
15.20;5.25.3 Results;392
15.21;5.25.4 Discussion;394
15.22;5.25.5 Conclusions;395
15.23;References;396
15.24;5.26 Dental applications case study 4: a comparison of plaster, digital and reconstructed study model accuracy;397
15.25;Acknowledgments;397
15.26;5.26.1 Introduction;397
15.27;5.26.2 Materials and methods;399
15.28;5.26.3 Results;403
15.29;5.26.4 Discussion;403
15.30;5.26.5 Conclusions;411
15.31;5.26.6 Future work;412
15.32;5.26.7 Contributors;412
15.33;References;412
15.34;5.27 Dental applications case study 5: design and fabrication of a sleep apnoea device using CAD/AM technologies;418
15.35;Acknowledgments;418
15.36;5.27.1 Introduction;418
15.37;5.27.2 Methods and materials;419
15.38;5.27.3 Results;424
15.39;5.27.4 Discussion;424
15.40;5.27.5 Conclusion;425
15.41;References;425
15.42;5.28 Dental applications case study 6: computer-aided design, CAM and AM applications in the manufacture of dental appliances;427
15.43;Acknowledgments;427
15.44;5.28.1 Introduction;427
15.45;5.28.2 Material and methods;428
15.46;5.28.3 Results;434
15.47;5.28.4 Discussion;434
15.48;5.28.5 Conclusion;435
15.49;References;435
16;Research applications;436
16.1;Acknowledgements;436
16.2;5.29.1 Introduction;436
16.3;5.29.2 Human sample data;437
16.4;5.29.3 The use of stereolithography in the study of cancellous bone;437
16.5;5.29.4 Single human bone sample (approximate 45-mm cube);437
16.6;5.29.5 Multiple human samples (approximate 50-mm cube);440
16.7;5.29.6 Conclusion;442
16.8;5.29.7 Software;443
16.9;Reference;443
16.10;Acknowledgements;444
16.11;5.30.1 Introduction;444
16.12;5.30.2 Definition of skin texture;445
16.13;5.30.3 Identification of suitable technologies;446
16.14;5.30.4 Methods;448
16.15;5.30.5 Case studies;448
16.16;5.30.6 Results;453
16.17;5.30.7 Discussion;453
16.18;5.30.8 Conclusions;454
16.19;References;454
16.20;Acknowledgements;456
16.21;5.31.1 Introduction;456
16.22;5.31.2 Materials and methods;458
16.23;5.31.3 Results;459
16.24;5.31.4 Discussion;464
16.25;5.31.5 Conclusions;465
16.26;Acknowledgements;465
16.27;Manufacturer contact details;465
16.28;References;465
16.29;5.32 Research applications case study 4: producing physical models from computed tomography scans of ancient Egyptian mummies;467
16.30;Acknowledgements;467
16.31;5.32.1 Introduction;467
16.32;5.32.2 Technology;468
16.33;5.32.3 Case studies;469
16.34;5.32.4 Conclusions;473
16.35;References;474
16.36;Acknowledgements;475
16.37;5.33.1 Introduction;475
16.38;5.33.2 Materials and methods;476
16.39;5.33.3 Discussion and conclusions;480
16.40;Acknowledgements;482
16.41;5.34.1 Introduction;482
16.42;5.34.2 Methods;483
16.43;5.34.3 Results;485
16.44;5.34.4 Discussion;486
16.45;References;488
17;6 - Future developments;490
17.1;6.1 Background;490
17.2;6.2 Scanning techniques;490
17.3;6.3 Data fusion;491
17.4;6.4 Rapid prototyping;491
17.5;6.5 Tissue engineering;492
18;Glossary and explanatory notes;494
19;Bibliography;498
19.1;Further reading on anatomy;498
19.2;Further reading on maxillofacial surgery and prosthetics;498
19.3;Further reading on computer-aided design and rapid prototyping;499
19.4;Further reading on splinting;499
19.5;Publications by the authors;499
19.6;Company contacts;503
20;Index;504
Woodhead Publishing Series in Biomaterials
Edited by J. F. Kennedy, G. O. Phillips and P. A. Williams
Edited by P. Vadgama
Edited by C. Chen
Edited by L. Hench and J. Jones
R. Bibb
Edited by S. Prakash
Edited by M. Jenkins
Edited by A. R. Boccaccini and J. Gough
Edited by T. Kokubo
Edited by R. V. Curtis and T. F. Watson
Edited by P. A. Revell
Edited by R. L. Reiss et al
Edited by F. J. Buchanan
Edited by S. Deb
Edited by T. Yoneyama and S. Miyazaki
Edited by L. Di Silvio
Edited by D. P. Orgill and C. Blanco
Edited by J. Denstedt and A. Atala
B. W. Darvell
Edited by J. A. Planell, S. M. Best, D. Lacroix and A. Merolli
Edited by L. Ambrosio
Edited by A. Lewis
Edited by T. V. Chirila
Edited by C. Archer and J. Ralphs
Edited by M. Ninomi
Edited by C. P. Sharma
Edited by T. Gourlay and R. Black
Edited by R. Williams
Edited by M. Lysaght and T. Webster
Edited by B. Vernon
Edited by S. Rimmer
Edited by J. Ferri and E. Hunziker
Edited by X. Zhao, J. M. Courtney and H. Qian
Edited by D. Farrar
Edited by L. Bosworth and S. Downes
Edited by H. O. Ylänen
Edited by M. Driver
Edited by A. Atala
Edited by L. Ambrosio and E. Tanner
Edited by T. Gourlay and S. Gunaydin
Edited by S. Affatato
Edited by W. Peters, H. Brandon, K. L. Jerina, C. Wolf and V. L. Young
Edited by S. Bhansali and A. Vasudev
Edited by M. Jenkins and A. Stamboulis
Edited by S. Higson
Edited by S. Lerouge and A. Simmons
Edited by K. De Smet, P. Campbell and C. Van Der Straeten
J. Basu and J. W. Ludlow
Edited by T. J. Webster
Edited by J-P. Boutrand
Edited by P. Gomes
Edited by A. Inmann and D. Hodgins
Edited by P. Vallittu
Edited by Y. (Norman) Zhou and M. D. Breyen
Edited by R. Narayan
Edited by A. K. Gaharwar, S. Sant, M. J. Hancock and S. A. Hacking
Edited by A. J. Ruys
Edited by V. Salih
Edited by P. Prokopovich
Edited by Y. Yan
Edited by X-J. James Li and Y. Zhou
Edited by J. T. Walker
Edited by P. Morris
Edited by M. Jaffe, W. Hammond, P. Tolias and T. Arinzeh
Edited by J. Paolo Davim
Edited by K. Park
E. P. Ivanova, K. Bazaka and R. J. Crawford
Edited by H. A. Santos
Edited by H. N. Bajaj and S. Katoch
Edited by R. Narayan
Edited by R-K. Li and R. D....