Bibb / Eggbeer / Paterson | Medical Modelling | E-Book | sack.de
E-Book

E-Book, Englisch, 516 Seiten

Reihe: Woodhead Publishing Series in Biomaterials

Bibb / Eggbeer / Paterson Medical Modelling

The Application of Advanced Design and Rapid Prototyping Techniques in Medicine
2. Auflage 2014
ISBN: 978-1-78242-313-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

The Application of Advanced Design and Rapid Prototyping Techniques in Medicine

E-Book, Englisch, 516 Seiten

Reihe: Woodhead Publishing Series in Biomaterials

ISBN: 978-1-78242-313-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Medical modelling and the principles of medical imaging, Computer Aided Design (CAD) and Rapid Prototyping (also known as Additive Manufacturing and 3D Printing) are important techniques relating to various disciplines - from biomaterials engineering to surgery. Building on the success of the first edition, Medical Modelling: The application of Advanced Design and Rapid Prototyping techniques in medicine provides readers with a revised edition of the original text, along with key information on innovative imaging techniques, Rapid Prototyping technologies and case studies.Following an overview of medical imaging for Rapid Prototyping, the book goes on to discuss working with medical scan data and techniques for Rapid Prototyping. In this second edition there is an extensive section of peer-reviewed case studies, describing the practical applications of advanced design technologies in surgical, prosthetic, orthotic, dental and research applications. - Covers the steps towards rapid prototyping, from conception (modelling) to manufacture (manufacture) - Includes a comprehensive case studies section on the practical application of computer-aided design (CAD) and rapid prototyping (RP) - Provides an insight into medical imaging for rapid prototyping and working with medical scan data

Prof Richard Bibb is a Professor of Medical Applications of Design at Loughborough University, UK. He graduated from Brunel University, UK (1995) with a BSc (Hons) in Industrial Design. He then ?undertook doctoral research in Rapid Prototyping at the National Centre for Product Design and Development Research (PDR), Cardiff Metropolitan University, UK. This study involved the development of a computerised Rapid Prototyping selection system for designers in small companies. After gaining his PhD in 1999 he established the Medical Applications Group at PDR to conduct collaborative applied research in medical applications of design technologies such as CAD and 3D Printing. He rose to the position of Director of Research ?for PDR before moving to Loughborough University in 2008.? In 2014 he established the Digital Design & Fabrication research lab (DDF) which focuses on ?advanced computer-aided design (CAD), 3D ?Printing and Additive Manufacturing technologies. Professor Bibb's personal research focus is the application of advanced product design and development ?technologies in medicine, surgery, rehabilitation and assistive technology.

Bibb / Eggbeer / Paterson Medical Modelling jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Front Matter;4
3;Contents;6
4;Woodhead Publishing Series in Biomaterials;10
5;Preface;14
6;Acknowledgements;16
7;1 - Introduction;18
7.1;1.1 Background;18
7.2;1.2 The human form;19
7.3;1.3 Basic anatomical terminology;20
7.4;1.4 Technical terminology;22
8;2 - Medical imaging;24
8.1;2.1 Introduction to medical imaging;24
8.2;2.2 Computed tomography (CT);25
8.3;2.3 Cone beam CT (CBCT);34
8.4;2.4 Magnetic resonance (MR);37
8.5;2.5 Noncontact surface scanning;41
8.6;2.6 Medical scan data;47
8.7;2.7 Point cloud data;49
8.8;2.8 Media;49
8.9;References;50
8.10;Recommended reading;50
9;3 - Working with medical scan data;52
9.1;3.1 Pixel data operations;52
9.2;3.2 Using CT data: a worked example;56
9.3;3.3 Point cloud data operations;61
9.4;3.4 Two-dimensional formats;65
9.5;3.5 Pseudo 3D formats;65
9.6;3.6 True 3D formats;68
9.7;3.7 File management and exchange;75
10;4 - Physical reproduction;82
10.1;4.1 Background to rapid prototyping;82
10.2;4.2 Stereolithography;92
10.3;4.3 Digital light processing;96
10.4;4.4 Fused deposition modelling;98
10.5;4.5 Laser sintering;101
10.6;4.6 Powder bed 3D printing;103
10.7;4.7 Material jetting technology;105
10.8;4.8 Laminated object manufacture;110
10.9;4.9 Computer numerical controlled machining;110
10.10;4.10 Cleaning and sterilising medical models;112
11;5 - Case Studies;116
11.1;Introduction;116
11.2;Implementation;118
11.3;Acknowledgements;118
11.4;5.1.1 Introduction;118
11.5;5.1.2 CT guidelines for medical modelling;120
11.6;5.1.3 Conclusion;124
11.7;Acknowledgements;124
11.8;References;125
11.9;5.2 Implementation case study 2: the development of a collaborative medical modelling service – organisational and technical con...;127
11.10;Acknowledgements;127
11.11;5.2.1 Introduction;127
11.12;5.2.2 Aims of medical modelling collaboration;128
11.13;5.2.3 Implementation;129
11.14;5.2.4 Discussion;132
11.15;5.2.5 Conclusions;135
11.16;5.2.6 Update;136
11.17;References;136
11.18;5.3 Implementation case study 3: medical rapid prototyping technologies – state of the art and current limitations for applicati...;137
11.19;Acknowledgements;137
11.20;5.3.1 Introduction;137
11.21;5.3.2 3D image acquisition and processing for MRP;138
11.22;5.3.3 RP technologies;139
11.23;5.3.4 Medical rapid prototyped model artefacts;142
11.24;5.3.5 Conclusion;149
11.25;5.3.6 Update;150
11.26;References;150
12;Surgical applications;154
12.1;5.4 Surgical applications case study 1: planning osseointegrated implants using computer-aided design and rapid prototyping;154
12.2;Acknowledgments;154
12.3;5.4.1 Introduction;154
12.4;5.4.2 Proposed approach;155
12.5;5.4.3 Scanning problems;155
12.6;5.4.4 Software problems;156
12.7;5.4.5 Illustrative case study;157
12.8;5.4.6 Results;159
12.9;5.4.7 Benefits and future development;160
12.10;5.4.8 Update;161
12.11;References;161
12.12;5.5 Surgical applications case study 2: rapid manufacture of custom-fit surgical guides;162
12.13;Acknowledgments;162
12.14;5.5.1 Introduction;162
12.15;5.5.2 Methods;163
12.16;5.5.3 Case study;165
12.17;5.5.4 Results;167
12.18;5.5.5 Discussion;168
12.19;5.5.6 Conclusions;168
12.20;5.5.7 Update;169
12.21;References;170
12.22;5.6 Surgical applications case study 3: use of a reconstructed three-dimensional solid model from computed tomography to aid in ...;172
12.23;Acknowledgments;172
12.24;5.6.1 Introduction;172
12.25;5.6.2 Materials and methods;172
12.26;5.6.3 Postoperative management and follow-up;175
12.27;5.6.4 Discussion;175
12.28;References;176
12.29;5.7 Surgical applications case study 4: custom-made titanium orbital floor prosthesis in reconstruction for orbital floor fractu...;177
12.30;Acknowledgments;177
12.31;5.7.1 Introduction;177
12.32;5.7.2 Technique;178
12.33;5.7.3 Case report;179
12.34;5.7.4 Conclusion;182
12.35;References;182
12.36;5.8 Surgical applications case study 5: use of three-dimensional technology in the multidisciplinary management of facial dispro...;184
12.37;Acknowledgments;184
12.38;5.8.1 Introduction;184
12.39;5.8.2 Materials and methods;184
12.40;5.8.3 Results;186
12.41;5.8.4 Discussion;188
12.42;References;188
12.43;5.9 Surgical applications case study 6: appropriate approach to computer-aided design and manufacture of reconstructive implants...;190
12.44;Acknowledgments;190
12.45;5.9.1 Introduction;190
12.46;5.9.2 Case 1: orbital rim augmentation implant;190
12.47;5.9.3 Case 2: orbital floor implant incorporating placement guide;195
12.48;5.9.3.1 Materials and methods;196
12.49;5.9.4 Case 3: multipart reconstruction;199
12.50;5.9.4.1 Materials and methods;199
12.51;5.9.5 Case 4: posttraumatic zygomatic osteotomy and orbital floor reconstruction;203
12.52;References;209
12.53;5.10 Surgical applications case study 7: computer-aided planning and additive manufacture for complex, mid-face osteotomies;211
12.54;Acknowledgments;211
12.55;5.10.1 Introduction;211
12.56;5.10.2 Methods;212
12.57;5.10.3 Results;215
12.58;5.10.4 Discussion;216
12.59;5.10.5 Conclusions;217
12.60;References;217
13;Maxillofacial rehabilitation;218
13.1;Acknowledgments;218
13.2;5.11.1 Introduction;218
13.3;5.11.2 Methods;219
13.4;5.11.3 Results;223
13.5;5.11.4 Update;224
13.6;References;224
13.7;5.12 Maxillofacial rehabilitation case study 2: producing burns therapy conformers using noncontact scanning and rapid prototyp...;225
13.8;Acknowledgements;225
13.9;5.12.1 Introduction;225
13.10;5.12.2 Methods;226
13.11;5.12.3 Results;230
13.12;5.12.4 Discussion;231
13.13;5.12.5 Conclusions;231
13.14;References;232
13.15;5.13 Maxillofacial rehabilitation case study 3: an appropriate approach to computer-aided design and manufacture of cranioplas...;233
13.16;Acknowledgements;233
13.17;5.13.1 Introduction;233
13.18;5.13.2 Initial case;234
13.19;5.13.3 Second case;239
13.20;5.13.4 Third case: press tool design;240
13.21;5.13.5 Fourth case: implant design for AM fabrication;242
13.22;5.13.6 Future development and benefits;243
13.23;References;244
13.24;5.14 Maxillofacial rehabilitation case study 4: evaluation of advanced technologies in the design and manufacture of an implant ...;245
13.25;Acknowledgements;245
13.26;5.14.1 Introduction;245
13.27;5.14.2 Existing facial prosthetics technique;246
13.28;5.14.3 Review of advanced technologies in facial prosthetics;246
13.29;5.14.4 Case 1;248
13.30;5.14.5 Case 2;250
13.31;5.14.6 Results;254
13.32;5.14.7 Discussion;254
13.33;5.14.8 Conclusions;255
13.34;References;256
13.35;5.15 Maxillofacial rehabilitation case study 5: rapid prototyping technologies in soft-tissue facial prosthetics – current state...;258
13.36;Acknowledgements;258
13.37;5.15.1 Introduction;258
13.38;5.15.2 Methodology;259
13.39;5.15.3 Summary of case studies;260
13.40;5.15.4 Discussion;265
13.41;5.15.5 RP&M Specification;269
13.42;5.15.6 Conclusions;270
13.43;References;271
13.44;5.16 Maxillofacial rehabilitation case study 6: evaluation of direct and indirect additive manufacture of maxillofacial prosthes...;273
13.45;Acknowledgements;273
13.46;5.16.1 Introduction;273
13.47;5.16.2 Methods;274
13.48;5.16.3 Results;283
13.49;5.16.4 Discussion;286
13.50;5.16.5 Conclusions;287
13.51;References;288
13.52;5.17 Maxillofacial rehabilitation case study 7: computer-aided methods in bespoke breast prosthesis design and fabrication;290
13.53;Acknowledgements;290
13.54;5.17.1 Introduction;290
13.55;5.17.2 Methods;291
13.56;5.17.3 Discussion;298
13.57;5.17.4 Conclusions;298
13.58;References;299
14;Orthotic rehabilitation applications;300
14.1;Acknowledgements;300
14.2;5.18.1 Introduction;300
14.3;5.18.2 Data acquisition methods;301
14.4;5.18.3 Conclusion and future work;306
14.5;Acknowledgements;308
14.6;References;308
14.7;5.19 Orthotic rehabilitation applications case study 2: comparison of additive manufacturing systems for the design and fabric...;311
14.8;Acknowledgements;311
14.9;5.19.1 Introduction;311
14.10;5.19.2 Aim and objectives;316
14.11;5.19.3 Method;316
14.12;5.19.4 Results;321
14.13;5.19.5 Conclusions and future work;330
14.14;Acknowledgements;333
14.15;References;333
14.16;5.20 Orthotic rehabilitation applications case study 3: evaluation of a digitised splinting approach with multiple-material func...;336
14.17;Acknowledgements;336
14.18;5.20.1 Introduction;336
14.19;5.20.2 Research aim and objectives;339
14.20;5.20.3 Methods;340
14.21;5.20.4 Results and discussion;347
14.22;5.20.5 Future work;348
14.23;Acknowledgements;349
14.24;References;349
14.25;5.21 Orthotic rehabilitation applications case study 4: digitisation of the splinting process – development of a CAD strategy fo...;352
14.26;Acknowledgements;352
14.27;5.21.1 Introduction;352
14.28;5.21.2 Current splinting techniques;353
14.29;5.21.3 Experimental procedures;355
14.30;5.21.4 Results;357
14.31;5.21.5 Conclusion;359
14.32;Acknowledgements;360
14.33;References;360
14.34;5.22 Orthotic rehabilitation applications case study 5: evaluation of a refined 3D CAD workflow for upper extremity splint desig...;361
14.35;Acknowledgements;361
14.36;5.22.1 Introduction;361
14.37;5.22.2 Method;363
14.38;5.22.3 Results and discussion;366
14.39;5.22.4 Conclusions and further work;366
14.40;Acknowledgements;367
14.41;References;367
15;Dental applications;370
15.1;5.23 Dental applications case study 1: the computer-aided design and rapid prototyping fabrication of removable partial denture ...;370
15.2;Acknowledgments;370
15.3;5.23.1 Introduction;370
15.4;5.23.2 Materials and methods;371
15.5;5.23.3 Conclusions;379
15.6;References;380
15.7;5.24 Dental applications case study 2: trial fitting of an RDP framework made using CAD and RP techniques;381
15.8;Acknowledgments;381
15.9;5.24.1 Introduction;381
15.10;5.24.2 Methods;381
15.11;5.24.3 Results;385
15.12;5.24.4 Discussion;386
15.13;5.24.5 Conclusions;387
15.14;Acknowledgments;387
15.15;References;387
15.16;5.25 Dental applications case study 3: direct additive manufacture of RPD frameworks;388
15.17;Acknowledgments;388
15.18;5.25.1 Introduction;388
15.19;5.25.2 Methodology;388
15.20;5.25.3 Results;392
15.21;5.25.4 Discussion;394
15.22;5.25.5 Conclusions;395
15.23;References;396
15.24;5.26 Dental applications case study 4: a comparison of plaster, digital and reconstructed study model accuracy;397
15.25;Acknowledgments;397
15.26;5.26.1 Introduction;397
15.27;5.26.2 Materials and methods;399
15.28;5.26.3 Results;403
15.29;5.26.4 Discussion;403
15.30;5.26.5 Conclusions;411
15.31;5.26.6 Future work;412
15.32;5.26.7 Contributors;412
15.33;References;412
15.34;5.27 Dental applications case study 5: design and fabrication of a sleep apnoea device using CAD/AM technologies;418
15.35;Acknowledgments;418
15.36;5.27.1 Introduction;418
15.37;5.27.2 Methods and materials;419
15.38;5.27.3 Results;424
15.39;5.27.4 Discussion;424
15.40;5.27.5 Conclusion;425
15.41;References;425
15.42;5.28 Dental applications case study 6: computer-aided design, CAM and AM applications in the manufacture of dental appliances;427
15.43;Acknowledgments;427
15.44;5.28.1 Introduction;427
15.45;5.28.2 Material and methods;428
15.46;5.28.3 Results;434
15.47;5.28.4 Discussion;434
15.48;5.28.5 Conclusion;435
15.49;References;435
16;Research applications;436
16.1;Acknowledgements;436
16.2;5.29.1 Introduction;436
16.3;5.29.2 Human sample data;437
16.4;5.29.3 The use of stereolithography in the study of cancellous bone;437
16.5;5.29.4 Single human bone sample (approximate 45-mm cube);437
16.6;5.29.5 Multiple human samples (approximate 50-mm cube);440
16.7;5.29.6 Conclusion;442
16.8;5.29.7 Software;443
16.9;Reference;443
16.10;Acknowledgements;444
16.11;5.30.1 Introduction;444
16.12;5.30.2 Definition of skin texture;445
16.13;5.30.3 Identification of suitable technologies;446
16.14;5.30.4 Methods;448
16.15;5.30.5 Case studies;448
16.16;5.30.6 Results;453
16.17;5.30.7 Discussion;453
16.18;5.30.8 Conclusions;454
16.19;References;454
16.20;Acknowledgements;456
16.21;5.31.1 Introduction;456
16.22;5.31.2 Materials and methods;458
16.23;5.31.3 Results;459
16.24;5.31.4 Discussion;464
16.25;5.31.5 Conclusions;465
16.26;Acknowledgements;465
16.27;Manufacturer contact details;465
16.28;References;465
16.29;5.32 Research applications case study 4: producing physical models from computed tomography scans of ancient Egyptian mummies;467
16.30;Acknowledgements;467
16.31;5.32.1 Introduction;467
16.32;5.32.2 Technology;468
16.33;5.32.3 Case studies;469
16.34;5.32.4 Conclusions;473
16.35;References;474
16.36;Acknowledgements;475
16.37;5.33.1 Introduction;475
16.38;5.33.2 Materials and methods;476
16.39;5.33.3 Discussion and conclusions;480
16.40;Acknowledgements;482
16.41;5.34.1 Introduction;482
16.42;5.34.2 Methods;483
16.43;5.34.3 Results;485
16.44;5.34.4 Discussion;486
16.45;References;488
17;6 - Future developments;490
17.1;6.1 Background;490
17.2;6.2 Scanning techniques;490
17.3;6.3 Data fusion;491
17.4;6.4 Rapid prototyping;491
17.5;6.5 Tissue engineering;492
18;Glossary and explanatory notes;494
19;Bibliography;498
19.1;Further reading on anatomy;498
19.2;Further reading on maxillofacial surgery and prosthetics;498
19.3;Further reading on computer-aided design and rapid prototyping;499
19.4;Further reading on splinting;499
19.5;Publications by the authors;499
19.6;Company contacts;503
20;Index;504


Woodhead Publishing Series in Biomaterials
1 Sterilisation of tissues using ionising radiations
Edited by J. F. Kennedy, G. O. Phillips and P. A. Williams 2 Surfaces and interfaces for biomaterials
Edited by P. Vadgama 3 Molecular interfacial phenomena of polymers and biopolymers
Edited by C. Chen 4 Biomaterials, artificial organs and tissue engineering
Edited by L. Hench and J. Jones 5 Medical modelling
R. Bibb 6 Artificial cells, cell engineering and therapy
Edited by S. Prakash 7 Biomedical polymers
Edited by M. Jenkins 8 Tissue engineering using ceramics and polymers
Edited by A. R. Boccaccini and J. Gough 9 Bioceramics and their clinical applications
Edited by T. Kokubo 10 Dental biomaterials
Edited by R. V. Curtis and T. F. Watson 11 Joint replacement technology
Edited by P. A. Revell 12 Natural-based polymers for biomedical applications
Edited by R. L. Reiss et al 13 Degradation rate of bioresorbable materials
Edited by F. J. Buchanan 14 Orthopaedic bone cements
Edited by S. Deb 15 Shape memory alloys for biomedical applications
Edited by T. Yoneyama and S. Miyazaki 16 Cellular response to biomaterials
Edited by L. Di Silvio 17 Biomaterials for treating skin loss
Edited by D. P. Orgill and C. Blanco 18 Biomaterials and tissue engineering in urology
Edited by J. Denstedt and A. Atala 19 Materials science for dentistry
B. W. Darvell 20 Bone repair biomaterials
Edited by J. A. Planell, S. M. Best, D. Lacroix and A. Merolli 21 Biomedical composites
Edited by L. Ambrosio 22 Drug–device combination products
Edited by A. Lewis 23 Biomaterials and regenerative medicine in ophthalmology
Edited by T. V. Chirila 24 Regenerative medicine and biomaterials for the repair of connective tissues
Edited by C. Archer and J. Ralphs 25 Metals for biomedical devices
Edited by M. Ninomi 26 Biointegration of medical implant materials: Science and design
Edited by C. P. Sharma 27 Biomaterials and devices for the circulatory system
Edited by T. Gourlay and R. Black 28 Surface modification of biomaterials: Methods analysis and applications
Edited by R. Williams 29 Biomaterials for artificial organs
Edited by M. Lysaght and T. Webster 30 Injectable biomaterials: Science and applications
Edited by B. Vernon 31 Biomedical hydrogels: Biochemistry, manufacture and medical applications
Edited by S. Rimmer 32 Preprosthetic and maxillofacial surgery: Biomaterials, bone grafting and tissue engineering
Edited by J. Ferri and E. Hunziker 33 Bioactive materials in medicine: Design and applications
Edited by X. Zhao, J. M. Courtney and H. Qian 34 Advanced wound repair therapies
Edited by D. Farrar 35 Electrospinning for tissue regeneration
Edited by L. Bosworth and S. Downes 36 Bioactive glasses: Materials, properties and applications
Edited by H. O. Ylänen 37 Coatings for biomedical applications
Edited by M. Driver 38 Progenitor and stem cell technologies and therapies
Edited by A. Atala 39 Biomaterials for spinal surgery
Edited by L. Ambrosio and E. Tanner 40 Minimized cardiopulmonary bypass techniques and technologies
Edited by T. Gourlay and S. Gunaydin 41 Wear of orthopaedic implants and artificial joints
Edited by S. Affatato 42 Biomaterials in plastic surgery: Breast implants
Edited by W. Peters, H. Brandon, K. L. Jerina, C. Wolf and V. L. Young 43 MEMS for biomedical applications
Edited by S. Bhansali and A. Vasudev 44 Durability and reliability of medical polymers
Edited by M. Jenkins and A. Stamboulis 45 Biosensors for medical applications
Edited by S. Higson 46 Sterilisation of biomaterials and medical devices
Edited by S. Lerouge and A. Simmons 47 The hip resurfacing handbook: A practical guide to the use and management of modern hip resurfacings
Edited by K. De Smet, P. Campbell and C. Van Der Straeten 48 Developments in tissue engineered and regenerative medicine products
J. Basu and J. W. Ludlow 49 Nanomedicine: Technologies and applications
Edited by T. J. Webster 50 Biocompatibility and performance of medical devices
Edited by J-P. Boutrand 51 Medical robotics: Minimally invasive surgery
Edited by P. Gomes 52 Implantable sensor systems for medical applications
Edited by A. Inmann and D. Hodgins 53 Non-metallic biomaterials for tooth repair and replacement
Edited by P. Vallittu 54 Joining and assembly of medical materials and devices
Edited by Y. (Norman) Zhou and M. D. Breyen 55 Diamond-based materials for biomedical applications
Edited by R. Narayan 56 Nanomaterials in tissue engineering: Fabrication and applications
Edited by A. K. Gaharwar, S. Sant, M. J. Hancock and S. A. Hacking 57 Biomimetic biomaterials: Structure and applications
Edited by A. J. Ruys 58 Standardisation in cell and tissue engineering: Methods and protocols
Edited by V. Salih 59 Inhaler devices: Fundamentals, design and drug delivery
Edited by P. Prokopovich 60 Bio-tribocorrosion in biomaterials and medical implants
Edited by Y. Yan 61 Microfluidic devices for biomedical applications
Edited by X-J. James Li and Y. Zhou 62 Decontamination in hospitals and healthcare
Edited by J. T. Walker 63 Biomedical imaging: Applications and advances
Edited by P. Morris 64 Characterization of biomaterials
Edited by M. Jaffe, W. Hammond, P. Tolias and T. Arinzeh 65 Biomaterials and medical tribology
Edited by J. Paolo Davim 66 Biomaterials for cancer therapeutics: Diagnosis, prevention and therapy
Edited by K. Park 67 New functional biomaterials for medicine and healthcare
E. P. Ivanova, K. Bazaka and R. J. Crawford 68 Porous silicon for biomedical applications
Edited by H. A. Santos 69 A practical approach to spinal trauma
Edited by H. N. Bajaj and S. Katoch 70 Rapid prototyping of biomaterials: Principles and applications
Edited by R. Narayan 71 Cardiac regeneration and repair Volume 1: Pathology and therapies
Edited by R-K. Li and R. D....



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.