Biemer | Latent Class Analysis of Survey Error | E-Book | sack.de
E-Book

E-Book, Englisch, 412 Seiten, E-Book

Reihe: Wiley Series in Survey Methodology

Biemer Latent Class Analysis of Survey Error


1. Auflage 2011
ISBN: 978-1-118-09957-5
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 412 Seiten, E-Book

Reihe: Wiley Series in Survey Methodology

ISBN: 978-1-118-09957-5
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Combining theoretical, methodological, and practical aspects,Latent Class Analysis of Survey Error successfully guides readersthrough the accurate interpretation of survey results for qualityevaluation and improvement. This book is a comprehensive resourceon the key statistical tools and techniques employed during themodeling and estimation of classification errors, featuring aspecial focus on both latent class analysis (LCA) techniques andmodels for categorical data from complex sample surveys.
Drawing from his extensive experience in the field of surveymethodology, the author examines early models for surveymeasurement error and identifies their similarities and differencesas well as their strengths and weaknesses. Subsequent chapterstreat topics related to modeling, estimating, and reducing errorsin surveys, including:
* Measurement error modeling forcategorical data
* The Hui-Walter model and othermethods for two indicators
* The EM algorithm and its role in latentclass model parameterestimation
* Latent class models for three ormore indicators
* Techniques for interpretation of modelparameter estimates
* Advanced topics in LCA, including sparse data, boundary values,unidentifiability, and local maxima
* Special considerations for analyzing datafrom clustered andunequal probability samples with nonresponse
* The current state of LCA and MLCA (multilevel latent classanalysis), and an insightful discussion on areas for furtherresearch
Throughout the book, more than 100 real-world examples describethe presented methods in detail, and readers are guided through theuse of lEM software to replicate the presented analyses. Appendicessupply a primer on categorical data analysis, and a related Website houses the lEM software.
Extensively class-tested to ensure an accessible presentation,Latent Class Analysis of Survey Error is an excellent book forcourses on measurement error and survey methodology at the graduatelevel. The book also serves as a valuable reference for researchersand practitioners working in business, government, and the socialsciences who develop, implement, or evaluate surveys.

Biemer Latent Class Analysis of Survey Error jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Paul P. Biemer, PhD, is Distinguished Fellow in Statistics at RTI International and Associate Director for Survey Research and Development at the Odum Institute for Research in Social Science at the University of North Carolina at Chapel Hill. An expert in the field of survey measurement error, Dr. Biemer has published extensively in his areas of research interest, which include survey design and analysis; general survey methodology; and nonsampling error modeling and evaluation. He is a coauthor of Introduction to Survey Quality and a coeditor of Telephone Survey Methodology, Survey Measurement and Process Quality, and Measurement Errors in Surveys, all published by Wiley.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.