E-Book, Englisch, 518 Seiten, Web PDF
Biswas / Davenport Extractive Metallurgy of Copper
3. Auflage 2013
ISBN: 978-1-4832-8785-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 518 Seiten, Web PDF
ISBN: 978-1-4832-8785-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
A completely revised and up-to-date edition containing comprehensive industrial data. The many significant changes which occurred during the 1980s and 1990s are chronicled. Modern high intensity smelting processes are presented in detail, specifically flash, Contop, Isasmelt, Noranda, Teniente and direct-to-blister smelting. Considerable attention is paid to the control of SO2 emissions and manufacture of H2SO4. Recent developments in electrorefining, particularly stainless steel cathode technology are examined. Leaching, solvent extraction and electrowinning are evaluated together with their impact upon optimizing mineral resource utilization. The volume targets the recycling of copper and copper alloy scrap as an increasingly important source of copper and copper alloys. Copper quality control is also discussed and the book incorporates an important section on extraction economics.Each chapter is followed by a summary of concepts previously described and offers suggested further reading and references.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Extractive Metallurgy of Copper;4
3;Copyright Page;5
4;Table of Contents;6
5;Preface to the Third Edition;14
6;Preface to the Second Edition;16
7;Preface to the First Edition;18
8;Chapter 1. Synopsis;20
8.1;1.1 Introduction;20
8.2;1.2 Extraction of Copper from Sulphide Ores;23
8.3;1.3 Hydrometallurgical Extraction of Copper;34
8.4;1.4 Melting of Cathodes and Casting;37
8.5;1.5 Recycle of Copper and Copper-Alloy Scrap;38
8.6;1.6 Miscellaneous Copper Processes;40
8.7;1.7 Summary of Chapter;40
8.8;Suggested Reading;41
8.9;References;41
9;Chapter 2 Production Statistics;42
9.1;2.1 Location of Copper Deposits;42
9.2;2.2 Location of Extraction Facilities;43
9.3;2.3 Copper Minerals and Cut-Off Grades;52
9.4;2.4 Price of Copper;54
9.5;2.5 Summary of Chapter;55
9.6;Suggested Reading;55
9.7;References;55
10;Chapter 3 Concentration of Copper Ores;57
10.1;3.1 Concentration Flowsheet;57
10.2;3.2 Crushing and Grinding (Comminution);61
10.3;3.3 Size Classification;61
10.4;3.4 Froth Flotation;71
10.5;3.5 Specific Flotation Procedures for Copper Ores;76
10.6;3.6 Flotation Cells, Residence Times;77
10.7;3.7 Sensors, Operation and Control;84
10.8;3.8 The Flotation Product;86
10.9;3.9 Other Flotation Separations;87
10.10;3.10 Summary of Chapter;89
10.11;Suggested Reading;90
10.12;References;90
11;Chapter 4. Matte Smelting;93
11.1;4.1 Reactions;95
11.2;4.2 Industrial Arrangements for Matte Smelting;98
11.3;4.3 Objectives and Control;98
11.4;4.4 Smelting Mechanisms;100
11.5;4.5 Atate;102
11.6;4.6 Slag;105
11.7;4.7 Creating Matte-Slag Immiscibility;109
11.8;4.8 Copper Distribution Between Matte and Slag;112
11.9;4.9 Choice of Matte Grade (% Cu in Matte);114
11.10;4.10 Behaviour of Impurities During Smelting;115
11.11;4.11 Summary of Chapter;116
11.12;Suggested Reading;117
11.13;References;117
12;Chapter 5. Flash Smelting—Outokumpu Process;119
12.1;5.1 Outokumpu Flash Furnace;120
12.2;5.2 Operation—Startup and Shutdown;126
12.3;5.3 Steady State Operation;127
12.4;5.4 Control;127
12.5;5.5 Optimum Operating Conditions;131
12.6;5.6 Process Variations;134
12.7;5.7 Dust and Waste Heat Boiler Problems;135
12.8;5.8 Recent Developments;136
12.9;5.9 Future Developments;137
12.10;5.10 Summary of Chapter;138
12.11;Suggested Reading;138
12.12;References;139
13;Chapter 6. Flash Smelting—Inco Process;142
13.1;6.1 Process Description;142
13.2;6.2 Construction Details;143
13.3;6.3 Auxiliary Equipment;145
13.4;6.4 Operation;148
13.5;6.5 Advantages of Inco Flash Smelting;152
13.6;6.6 Summary of Chapter;153
13.7;Suggested Reading;153
13.8;References;154
14;Chapter 7. Reverberatory Furnace Matte Smelting;155
14.1;7.1 Reasons for Decline of Reverberatory Smelting 13;155
14.2;7.2 Description of the Process;159
14.3;7.3 Construction Details;161
14.4;7.4 Burners;162
14.5;7.5 Summary of Chapter;165
14.6;Suggested Reading;166
14.7;References;166
15;Chapter 8. Electric Furnace Matte Smelting;168
15.1;8.1 Advantages and Disadvantages;168
15.2;8.2 Description;171
15.3;8.3 Construction Details;172
15.4;8.4 Electrical System;173
15.5;8.5 Power Input, Productivity, Control;174
15.6;8.6 Energy Requirements and Costs;176
15.7;8.7 Summary of Chapter;176
15.8;Suggested Reading ;177
15.9;References;177
16;Chapter 9. Noranda and Teniente Processes;179
16.1;9.1 Noranda Process;181
16.2;9.2 Reaction Mechanisms;181
16.3;9.3 Operation and Control;185
16.4;9.4 Production Rate Enhancement;187
16.5;9.5 Teniente Process;188
16.6;9.6 Process Description;192
16.7;9.7 Operation and Control;192
16.8;9.8 Dry Concentrate Injection Through Tuyeres;193
16.9;9.9 Other Developments;194
16.10;9.10 Summary of Chapter;195
16.11;Suggested Reading;196
16.12;References;196
17;Chapter 10. Emerging Matte Smelting Technologies—Isasmelt, Vanyukov and Contop Processes;198
17.1;10.1 Isasmelt Matte Smelting;198
17.2;10.2 Vanyukov Matte Smelting;203
17.3;10.3 Contop Matte Smelting;206
17.4;10.4 Summary of Chapter;210
17.5;Suggested Reading;210
17.6;References;211
18;Chapter 11. Converting of Cu Matte;213
18.1;11.1 Chemistry;215
18.2;11.2 Industrial Peirce-Smith Converting Operations;220
18.3;11.3 Oxygen Enrichment of Peirce-Smith Converter Blast;229
18.4;11.4 Maximizing Converter Productivity;230
18.5;11.5 Recent Developments in Converting—High Pressure Injection of Converter Blast;233
18.6;11.6 Alternatives to Peirce-Smith Converting;234
18.7;11.7 Summary of Chapter;238
18.8;Suggested Reading;239
18.9;References;239
19;Chapter 12. Copper Loss in Slag;243
19.1;12.1 Cu Concentrations in Smelting and Converting Slags;243
19.2;12.2 Quantities and Minimization of Cu in Discard Slags;247
19.3;12.3 Settling of Cu from Molten Slag;249
19.4;12.4 Recovery of Cu from Slag by Solidification/Comminution/Flotation;254
19.5;12.5 Comparison of Settling and Solidification/Comminution/Flotation;263
19.6;12.6 Summary of Chapter;263
19.7;Suggested Reading;264
19.8;References;264
20;Chapter 13. Direct-to-Blister Flash Smelting;267
20.1;13.1 The Ideal Direct-to-Blister Coppermaking Process;268
20.2;13.2 Industrial Single Furnace Direct-to-Blister Smelting 24913.3 Chemistry;268
20.3;13.3 Chemistry;269
20.4;13.4 Industrial Details;271
20.5;13.5 Control;274
20.6;13.6 Cu in Slag: Comparison with Conventional Matte Smelting/Converting;275
20.7;13.7 Cu-in-Slag Limitation on Direct-to-Blister Smelting;277
20.8;13.8 Impurities in Direct-to-Blister Copper;277
20.9;13.9 Summary of Chapter;278
20.10;Suggested Reading;279
20.11;References;279
21;Chapter 14. Continuous Multi-Furnace Smelting—Mitsubishi Process;280
21.1;14.1 The Mitsubishi Process;281
21.2;14.2 Smelting Furnace Details;282
21.3;14.3 Electric Slag Cleaning Furnace Details;285
21.4;14.4 Converting Furnace Details;287
21.5;14.5 Recent Developments in Mitsubishi Continuous Smelting;289
21.6;14.6 Reaction Mechanisms in Mitsubishi Smelting;289
21.7;14.7 Optimum Matte Grade;291
21.8;14.8 Impurity Behaviour in Mitsubishi Smelting/Converting;292
21.9;14.9 Summary of Chapter;293
21.10;Suggested Reading;294
21.11;References;294
22;Chapter 15. Capture and Fixation of Sulphur;296
22.1;15.1 Offgases from Smelting and Converting Processes;297
22.2;15.2 Sulphuric Acid Manufacture;299
22.3;15.3 Alternative Sulphur Products;317
22.4;15.4 Future Improvements in Sulphur Capture;318
22.5;15.5 Summary of Chapter;319
22.6;Suggested Reading;320
22.7;References;320
23;Chapter 16. Fire Refining and Casting of Anodes: Sulphur and Oxygen Removal;323
23.1;16.1 Industrial Methods of Fire Refining;324
23.2;16.2 Chemistry of Fire Refining;328
23.3;16.3 Choice of Hydrocarbon for Deoxidation;329
23.4;16.4 Casting Anodes;331
23.5;16.5 Continuous Anode Casting;333
23.6;16.6 New Anodes from Rejects and Anode Scrap;335
23.7;16.7 Removal of Impurities During Fire Refining;336
23.8;16.8 Summary of Chapter;338
23.9;Suggested Reading;339
23.10;References;340
24;Chapter 17. Electrolytic Refining of Copper;343
24.1;17.1 Principles;347
24.2;17.2 Behaviour of Anode Impurities during Electrorefining;349
24.3;17.3 Industrial Electrorefining;352
24.4;17.4 A Typical Refining Cycle;359
24.5;17.5 Maximizing Cathode Purity;360
24.6;17.6 Optimum Physical Arrangements;360
24.7;17.7 Optimum Chemical Arrangements;361
24.8;17.8 Optimum Electrical Arrangements;365
24.9;17.9 Maximizing Cathode Production Rate;365
24.10;17.10 Energy Consumption;369
24.11;17.11 Recent Developments in Copper Refining;370
24.12;17.12 Summary of Chapter;372
24.13;Suggested Reading;373
24.14;References;373
25;Chapter 18. Hydrometallurgical Copper Extraction: Introduction and Leaching;377
25.1;18.1 Leaching;377
25.2;18.2 Leaching Methods—Heap and Dump Leaching;382
25.3;18.3 In Situ Leaching;390
25.4;18.4 Tailings Leaching;391
25.5;18.5 Vat Leaching;391
25.6;18.6 Agitation Leaching of Oxidic Concentrates and Roaster Calcines;393
25.7;18.7 Leaching of Sulphide Concentrates;394
25.8;18.8 Future Hydrometallurgical Developments;397
25.9;18.9 Summary of Chapter;398
25.10;Suggested Reading;399
25.11;References;399
26;Chapter 19. Solvent Extraction Transfer of Copper From Leach Solution to Electrolyte;402
26.1;19.1 The Solvent Extraction Process;403
26.2;19.2 Chemistry;404
26.3;19.3 The Extractants;405
26.4;19.4 Industrial Solvent Extraction Plants;406
26.5;19.5 Extractant Choice;415
26.6;19.6 Organic Loss, Degradation and Reclamation;417
26.7;19.7 Summary of Chapter;418
26.8;Suggested Reading;418
26.9;References;419
27;Chapter 20. Electrowinning;420
27.1;20.1 Electrowinning Reactions;421
27.2;20.2 Electrowinning Tankhouse Practice;422
27.3;20.3 Maximizing Copper Purity;428
27.4;20.4 Choice of Cathode;429
27.5;20.5 Electrowinning from Agitation Leach Solutions;430
27.6;20.6 Summary of Chapter;430
27.7;Suggested Reading;431
27.8;References;431
28;Chapter 21. Recycle of Copper and Copper Alloy Scrap;433
28.1;21.1 Advantages of Copper Recycle;433
28.2;21.2 New Scrap and Old Scrap;434
28.3;21.3 Categories of Scrap;436
28.4;21.4 Physical Isolation of Copper and Copper-Alloy Scrap;436
28.5;21.5 Purification of Copper Scrap;439
28.6;21.6 Sampling and Analysis;441
28.7;21.7 Turning Scrap into New Copper or Alloy All;441
28.8;21.8 Low Grade Scrap and Residues;444
28.9;21.9 Recycling Scrap in Primary Smelters;448
28.10;21.10 Summary of Chapter;450
28.11;Suggested Reading;450
28.12;References;451
29;Chapter 22. Melting, Casting and Quality;453
29.1;22.1 Melting of Cathodes;454
29.2;22.2 Casting into Fabrication Shapes;457
29.3;22.3 Continuous Bar Casting;457
29.4;22.4 Oxygen and Inclusion Control;463
29.5;22.5 Rod Rolling;463
29.6;22.6 Rod Quality;464
29.7;22.7 Specifications for Cathode Copper;467
29.8;22.8 Casting of Billets and Slabs;469
29.9;22.9 Summary of Chapter;471
29.10;Suggested Reading;472
29.11;References;472
30;Chapter 23. Costs of Extracting Copper;474
30.1;23.1 Overall Capital Costs: Mine through Refinery;476
30.2;23.2 Overall Direct Operating Costs: Mine to Refinery;479
30.3;23.3 Total Production Costs, Selling Prices, Profitability;480
30.4;23.4 Concentrator Costs;482
30.5;23.5 Smelting Costs;484
30.6;23.6 Electrorefining Costs;487
30.7;23.7 Reclamation of Copper from Scrap;489
30.8;23.8 Leach/Solvent Extraction/Electroninning Costs;490
30.9;23.9 Profitability;490
30.10;23.10 Summary of Chapter;492
30.11;References;492
31;Appendices;493
31.1;A.I Roasting Copper Concentrates;493
31.2;A.II Units and Conversion Factors;504
31.3;A.III Stoichiometric Data for Copper Extraction;505
32;Index;508




