Blangiardo / Cameletti | Spatial and Spatio-temporal Bayesian Models with R - INLA | E-Book | sack.de
E-Book

E-Book, Englisch, 320 Seiten, E-Book

Blangiardo / Cameletti Spatial and Spatio-temporal Bayesian Models with R - INLA


1. Auflage 2015
ISBN: 978-1-118-95019-7
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 320 Seiten, E-Book

ISBN: 978-1-118-95019-7
Verlag: John Wiley & Sons
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Spatial and Spatio-Temporal Bayesian Models withR-INLA provides a much needed, practically oriented& innovative presentation of the combination of Bayesianmethodology and spatial statistics. The authors combine anintroduction to Bayesian theory and methodology with a focus on thespatial and spatio--temporal models used within the Bayesianframework and a series of practical examples which allow the readerto link the statistical theory presented to real data problems. Thenumerous examples from the fields of epidemiology, biostatisticsand social science all are coded in the R package R-INLA, which hasproven to be a valid alternative to the commonly used Markov ChainMonte Carlo simulations

Blangiardo / Cameletti Spatial and Spatio-temporal Bayesian Models with R - INLA jetzt bestellen!

Weitere Infos & Material


Dedication iii
Preface ix
1 Introduction 1
1.1 Why spatial and spatio-temporal statistics? 1
1.2 Why do we use Bayesian methods for modelling spatial and spatio-temporal structures? 2
1.3 Why INLA? 3
1.4 Datasets 3
2 Introduction to 21
2.1 The language 21
2.2 objects 22
2.3 Data and session management 34
2.4 Packages 35
2.5 Programming in 36
2.6 Basic statistical analysis with 39
3 Introduction to Bayesian Methods 53
3.1 Bayesian Philosophy 53
3.2 Basic Probability Elements 57
3.3 Bayes Theorem 62
3.4 Prior and Posterior Distributions 64
3.5 Working with the Posterior Distribution 66
3.6 Choosing the Prior Distribution 68
4 Bayesian computing 83
4.1 Monte Carlo integration 83
4.2 Monte Carlo method for Bayesian inference 85
4.3 Probability distributions and random number generation in 86
4.4 Examples of Monte Carlo simulation 89
4.5 Markov chain Monte Carlo methods 97
4.6 The Integrated Nested Laplace Approximations algorithm 113
4.7 Laplace approximation 113
4.8 The package 123
4.9 How INLA works: step by step example 127
5 Bayesian regression and hierarchical models 139
5.1 Linear Regression 139
5.2 Nonlinear regression: random walk 145
5.3 Generalized Linear Models 150
5.4 Hierarchical Models 159
5.5 Prediction 176
5.6 Model Checking and Selection 179
6 Spatial Modeling 189
6.1 Areal data -GMRF 192
6.2 Ecological Regression 203
6.3 Zero inated models 204
6.4 Geostatistical data 210
6.5 The Stochastic Partial Diferential Equation approach 211
6.6 SPDE within 215
6.7 SPDE toy example with simulated data 217
6.8 More advanced operations through the function 226
6.9 Prior specification for the stationary case 233
6.10 SPDE for Gaussian response: Swiss rainfall data 237
6.11 SPDE with nonnormal outcome: Malaria in the Gambia 245
6.12 Prior specification for the nonstationary case 249
7 Spatio-Temporal Models 257
7.1 Spatio-temporal Disease mapping 258
7.2 Spatio-temporal Modeling particulate matter concentration 268
8 Advanced modeling 283
8.1 Bivariate model for spatially misaligned data 283
8.2 Semicontinuous model to daily rainfall 295
8.3 Spatio-temporal dynamic models 308
8.4 Space-time model lowering the time resolution 321


Marta Blangiardo, MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, UK
Michela Cameletti, Department of Management, Economics and Quantitative Methods, University of Bergamo, Italy



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.