Bobillo / Costa / d'Amato | Uncertainty Reasoning for the Semantic Web II | Buch | 978-3-642-35974-3 | sack.de

Buch, Englisch, Band 7123, 331 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 528 g

Reihe: Lecture Notes in Computer Science

Bobillo / Costa / d'Amato

Uncertainty Reasoning for the Semantic Web II

International Workshops URSW 2008-2010 Held at ISWC and UniDL 2010 Held at Floc, Revised Selected Papers
2013
ISBN: 978-3-642-35974-3
Verlag: Springer

International Workshops URSW 2008-2010 Held at ISWC and UniDL 2010 Held at Floc, Revised Selected Papers

Buch, Englisch, Band 7123, 331 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 528 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-642-35974-3
Verlag: Springer


This book contains revised and significantly extended versions of selected papers from three workshops on Uncertainty Reasoning for the Semantic Web (URSW), held at the International Semantic Web Conferences (ISWC) in 2008, 2009, and 2010 or presented at the first international Workshop on Uncertainty in Description Logics (UniDL), held at the Federated Logic Conference (FLoC) in 2010. The 17 papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on probabilistic and Dempster-Shafer models, fuzzy and possibilistic models, inductive reasoning and machine learning, and hybrid approaches.

Bobillo / Costa / d'Amato Uncertainty Reasoning for the Semantic Web II jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


PR-OWL 2.0 – Bridging the Gap to OWL Semantics.- Probabilistic Ontology and Knowledge Fusion for Procurement Fraud Detection in Brazil.- Understanding a Probabilistic Description Logic via Connections to First-Order Logic of Probability.- Pronto: A Practical Probabilistic Description Logic Reasoner.- Instance-Based Non-standard Inferences in EL with Subjective Probabilities.- Finite Fuzzy Description Logics and Crisp Representations.- Reasoning in Fuzzy OWL 2 with DeLorean.- Dealing with Contradictory Evidence Using Fuzzy Trust in Semantic Web Data.- Storing and Querying Fuzzy Knowledge in the Semantic Web Using FiRE.- Transforming Fuzzy Description Logic ALCFL into Classical Description Logic ALCH.- A Fuzzy Logic-Based Approach to Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension. PrOntoLearn: Unsupervised Lexico-Semantic Ontology Generation Using Probabilistic Methods.- Semantic Web Search and Inductive Reasoning.- Ontology Enhancement through Inductive Decision Trees.- Assertion Prediction with Ontologies through Evidence Combination.- Representing Uncertain Concepts in Rough Description Logics via Contextual Indiscernibility Relations.- Efficient Trust-Based Approximate SPARQL Querying of the Web of Linked Data.- Probabilistic Ontology and Knowledge Fusion for Procurement Fraud Detection in Brazil.- Understanding a Probabilistic Description Logic via Connections to First-Order Logic of Probability.- Pronto: A Practical Probabilistic Description Logic Reasoner.- Instance-Based Non-standard Inferences in EL with Subjective Probabilities.- Finite Fuzzy Description Logics and Crisp Representations.- Reasoning in Fuzzy OWL 2 with DeLorean.- Dealing with Contradictory Evidence Using Fuzzy Trust in Semantic Web Data.- Storing and Querying Fuzzy Knowledge in the Semantic Web Using FiRE.- Transforming Fuzzy Description Logic ALCFL into Classical Description LogicALCH.- A Fuzzy Logic-Based Approach to Uncertainty Treatment in the Rule Interchange Format: From Encoding to Extension.- PrOntoLearn: Unsupervised Lexico-Semantic Ontology Generation Using Probabilistic Methods.- Semantic Web Search and Inductive Reasoning.- Ontology Enhancement through Inductive Decision Trees.- Assertion Prediction with Ontologies through Evidence Combination.- Representing Uncertain Concepts in Rough Description Logics via Contextual Indiscernibility Relations.- Efficient Trust-Based Approximate SPARQL Querying of the Web of Linked Data.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.