Boccotti | Wave Mechanics and Wave Loads on Marine Structures | E-Book | www.sack.de
E-Book

E-Book, Englisch, 344 Seiten

Boccotti Wave Mechanics and Wave Loads on Marine Structures


1. Auflage 2014
ISBN: 978-0-12-800413-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 344 Seiten

ISBN: 978-0-12-800413-5
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Wave Mechanics and Wave Loads on Marine Structures provides a new perspective on the calculation of wave forces on ocean structures, unifying the deterministic and probabilistic approaches to wave theory and combining the methods used in field and experimental measurement.Presenting his quasi-determinism (QD) theory and approach of using small-scale field experiments (SSFEs), author Paolo Boccotti simplifies the findings and techniques honed in his ground-breaking work to provide engineers and researchers with practical new methods of analysis. Including numerous worked examples and case studies, Wave Mechanics and Wave Loads on Marine Structures also discusses and provides useful FORTRAN programs, including a subroutine for calculating particle velocity and acceleration in wave groups, and programs for calculating wave loads on several kinds of structures. - Solves the conceptual separation of deterministic and stochastic approaches to wave theory seen in other resources through the application of quasi-determinism (QD) theory - Combines the distinct experimental activities of field measurements and wave tank experiment using small-scale field experiments (SSFEs) - Simplifies and applies the ground-breaking work and techniques of this leading expert in wave theory and marine construction

Paolo Boccotti is a Professor in the Department of Civil Engineering at the Mediterranean University of Reggio Calabria in Italy, where he has been since 1986. Highlights of his career include him founding the university's School of Marine Engineering and the NOEL laboratory for small-scale field experiments from scratch. Boccotti has authored over 30 papers for prestigious journals such as Ocean Engineering, the Journal of Waterway, Port, Coastal and Ocean Engineering, the Journal of Fluid Mechanics and the Journal of Geophysical Research, and in 2000 he published the first edition of 'Wave Mechanics for Ocean Engineering' with Elsevier

Boccotti Wave Mechanics and Wave Loads on Marine Structures jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Wave Mechanics and Wave Loads on Marine Structures;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;Preface;16
7;Acknowledgments;18
8;Symbols;20
9;Abbreviations and Acronyms;24
10;Chapter 1 - Wave Mechanics: Basic Concepts;26
10.1;1.1 THE SYSTEM OF EQUATIONS;26
10.2;1.2 INTRODUCTION TO WAVE MECHANICS;28
10.3;1.3 STOKES' THEORY TO THE FIRST ORDER;30
10.4;1.4 STOKES' THEORY TO THE SECOND ORDER;32
10.5;1.5 WAVE–CURRENT INTERACTION;35
10.6;1.6 PRELIMINARY REMARKS ON THREE-DIMENSIONAL WAVES;37
10.7;1.7 WAVE REFLECTION;38
10.8;1.8 WAVE DIFFRACTION;42
10.9;1.9 ENERGY FLUX AND WAVE ENERGY;46
10.10;1.10 THE GROUP VELOCITY;47
10.11;1.11 CONCLUSION;48
10.12;REFERENCES;48
11;Chapter 2 - Wave Transformation near Coasts;50
11.1;2.1 REFRACTION WITH STRAIGHT CONTOUR LINES;50
11.2;2.2 REFRACTION WITH ARBITRARY CONTOUR LINES;52
11.3;2.3 WAVE–CURRENT INTERACTION IN SOME STRAITS;56
11.4;2.4 WORKED EXAMPLE;60
11.5;2.5 CONCLUSION;66
11.6;REFERENCES;66
12;Chapter 3 - Random Wind-Generated Waves: Basic Concepts;68
12.1;3.1 SEA STATE, SIGNIFICANT WAVE HEIGHT, SPECTRUM, AUTOCOVARIANCE;68
12.2;3.2 THE CONCEPT OF “VERY NARROW SPECTRUM”;71
12.3;3.3 BANDWIDTH AND NARROW-BANDEDNESS PARAMETERS;73
12.4;3.4 CHARACTERISTIC SPECTRA OF WIND SEAS;75
12.5;3.5 HOW TO OBTAIN THE FREQUENCY SPECTRUM;79
12.6;3.6 WAVE RECORD ANALYSIS;82
12.7;3.7 SMALL-SCALE FIELD EXPERIMENTS;83
12.8;3.8 CONCLUSION;85
12.9;REFERENCES;86
13;Chapter 4 - Wave Statistics in Sea States;88
13.1;4.1 SURFACE ELEVATION AS A STATIONARY GAUSSIAN PROCESS;89
13.2;4.2 JOINT PROBABILITY OF SURFACE ELEVATION;91
13.3;4.3 RICE'S PROBLEM (1958);92
13.4;4.4 COROLLARIES OF RICE'S PROBLEM;94
13.5;4.5 CONSEQUENCES OF THE QD THEORY ONTO WAVE STATISTICS;96
13.6;4.6 FIELD VERIFICATION;100
13.7;4.7 MAXIMUM EXPECTED WAVE HEIGHT AND CREST HEIGHT IN A SEA STATE OF GIVEN CHARACTERISTICS;102
13.8;4.8 FORTRAN PROGRAMS FOR THE MAXIMUM EXPECTED WAVE IN A SEA STATE OF GIVEN CHARACTERISTICS;103
13.9;4.9 CONCLUSION;111
13.10;REFERENCES;112
14;Chapter 5 - Design Wave;114
14.1;5.1 DISTRIBUTION OF HS FOR A GIVEN GEOGRAPHIC LOCATION;115
14.2;5.2 THE “EQUIVALENT TRIANGULAR STORM”;116
14.3;5.3 RETURN PERIOD AND AVERAGE PERSISTENCE;120
14.4;5.4 THE ENCOUNTER PROBABILITY OF A SEA STORM WITH SOME GIVEN CHARACTERISTICS;124
14.5;5.5 THE DESIGN SEA STATE FOR GIVEN LIFETIME AND ENCOUNTER PROBABILITY;125
14.6;5.6 ESTIMATE OF THE LARGEST WAVE HEIGHT IN THE LIFETIME;127
14.7;5.7 CONCLUSION;136
14.8;REFERENCES;137
15;Chapter 6 - Space–Time Theory of Sea States;140
15.1;6.1 WAVE FIELD IN THE OPEN SEA;140
15.2;6.2 MAXIMUM EXPECTED WAVE HEIGHT AT A GIVEN ARRAY OF POINTS IN THE DESIGN SEA STATE;142
15.3;6.3 DIRECTIONAL SPECTRUM: DEFINITION AND CHARACTERISTIC SHAPE;144
15.4;6.4 CLASSIC APPROACH: OBTAINING THE DIRECTIONAL DISTRIBUTION;145
15.5;6.5 NEW APPROACH: OBTAINING INDIVIDUAL ANGLES .I;148
15.6;6.6 SUBROUTINES FOR CALCULATION OF THE DIRECTIONAL SPECTRUM WITH THE NEW METHOD;151
15.7;6.7 WORKED EXAMPLE OF OBTAINING A DIRECTIONAL SPECTRUM;162
15.8;6.8 CONCLUSION;166
15.9;REFERENCES;167
16;Chapter 7 - Complements of Space–Time Theory of Sea States*;170
16.1;7.1 CROSS-COVARIANCES: HOMOGENEOUS RANDOM WAVE FIELD;170
16.2;7.2 SEA STATES NONHOMOGENEOUS IN SPACE;171
16.3;7.3 CROSS-COVARIANCES: NONHOMOGENEOUS RANDOM WAVE FIELDS;176
16.4;7.4 MAXIMUM EXPECTED WAVE HEIGHT IN A NONHOMOGENEOUS SEA STATE;179
16.5;7.5 CONCLUSION;179
16.6;REFERENCES;180
17;Chapter 8 - The Theory of Quasi-Determinism;182
17.1;8.1 THE NECESSARY AND SUFFICIENT CONDITION FOR THE OCCURRENCE OF A WAVE CREST OF GIVEN VERY LARGE HEIGHT;182
17.2;8.2 A SUFFICIENT CONDITION FOR THE OCCURRENCE OF A WAVE OF GIVEN VERY LARGE HEIGHT;184
17.3;8.3 A NECESSARY CONDITION FOR THE OCCURRENCE OF A WAVE OF GIVEN VERY LARGE HEIGHT;188
17.4;8.4 THE FIRST DETERMINISTIC WAVE FUNCTION IN SPACE AND TIME;191
17.5;8.5 THE VELOCITY POTENTIAL ASSOCIATED WITH THE FIRST DETERMINISTIC WAVE FUNCTION IN SPACE AND TIME;193
17.6;8.6 THE SECOND DETERMINISTIC WAVE FUNCTION IN SPACE AND TIME;194
17.7;8.7 COMMENT: A DETERMINISTIC MECHANICS IS BORN BY THE THEORY OF PROBABILITY;195
17.8;8.8 CONCLUSION;195
17.9;REFERENCES;197
18;Chapter 9 - Quasi-Determinism Theory: Mechanics of Wave Groups;198
18.1;9.1 WHAT DOES THE DETERMINISTIC WAVE FUNCTION REPRESENT?;198
18.2;9.2 PARTICLE VELOCITY AND ACCELERATION IN WAVE GROUPS;202
18.3;9.3 THE SUBROUTINE QD;207
18.4;9.4 EXPERIMENTAL VERIFICATION OF THE QUASI-DETERMINISM THEORY: BASIC CONCEPTS;211
18.5;9.5 RESULTS OF SMALL-SCALE FIELD EXPERIMENTS;213
18.6;9.6 CONCLUSION;217
18.7;REFERENCES;217
19;Chapter 10 - QD Theory: Mechanics of Wave Forces on Large Isolated Bodies;220
19.1;10.1 FURTHER PROOF THAT THE QD THEORY HOLDS FOR ARBITRARY CONFIGURATIONS OF THE SOLID BOUNDARY;220
19.2;10.2 DETERMINISTIC PRESSURE FLUCTUATIONS ON SOLID BODY;221
19.3;10.3 COMPARING WAVE PRESSURES ON AN ISOLATED SOLID BODY TO THE WAVE PRESSURES ON AN EQUIVALENT WATER BODY;223
19.4;10.4 THE REASON THE WAVE FORCE ON THE SOLID BODY IS GREATER THAN THE FROUDE–KRYLOV FORCE;225
19.5;10.5 COMPARING WAVE FORCE ON AN ISOLATED SOLID BODY TO THE FROUDE–KRYLOV FORCE;228
19.6;10.6 A GENERAL MODEL FOR CALCULATING THE DIFFRACTION COEFFICIENT OF WAVE FORCES;230
19.7;10.7 OVERALL SYNTHESIS;232
19.8;10.8 CONCLUSION;233
19.9;REFERENCES;233
20;Chapter 11 - QD Theory: Mechanics of Reflected and Diffracted Wave Groups;234
20.1;11.1 BEFORE A BREAKWATER;234
20.2;11.2 IN THE LEE OF A BREAKWATER;244
20.3;11.3 EXPERIMENTAL VERIFICATION;245
20.4;11.4 CONCLUSION;249
20.5;REFERENCES;251
21;Chapter 12 - Calculation of Wave Forces on Three-Dimensional Space Frames;252
21.1;12.1 MORISON EQUATION AND DRAG AND INERTIA COEFFICIENTS;252
21.2;12.2 FIELD TESTS OF MORISON EQUATION;254
21.3;12.3 WORKED EXAMPLE;260
21.4;12.4 CONCLUSION;266
21.5;REFERENCES;267
22;Chapter 13 - Calculation of Wave Forces on Gravity Platforms and Submerged Tunnels;270
22.1;13.1 WAVE FORCES ON A GRAVITY OFFSHORE PLATFORM;270
22.2;13.2 WAVE FORCES ON A SUBMERGED TUNNEL;275
22.3;13.3 CONCLUSION;282
22.4;REFERENCES;282
23;Chapter 14 - Loads of Sea Storms on Vertical Breakwaters;284
23.1;14.1 OVERALL STABILITY OF AN UPRIGHT SECTION;284
23.2;14.2 WAVE PRESSURES;286
23.3;14.3 EVIDENCES FROM SSFES;289
23.4;14.4 THE RISK OF IMPULSIVE BREAKING WAVE PRESSURES;290
23.5;14.5 WORKED EXAMPLES;291
23.6;14.6 CONCLUSION;292
23.7;REFERENCES;292
24;Chapter 15 - Conversion of Wave Energy;294
24.1;15.1 AN OVERVIEW OF WORK DONE TO EXPLOIT WAVE ENERGY SOURCE;294
24.2;15.2 THE PROPAGATION SPEED OF WAVE ENERGY;297
24.3;15.3 INTERACTION BETWEEN WAVE AND U-OWC;301
24.4;15.4 CONCLUSION;307
24.5;REFERENCES;307
25;Chapter 16 - Design of a Wave Energy Converter;310
25.1;16.1 THE WATER AND AIR FLOW INSIDE A U-OWC;310
25.2;16.2 PRODUCTION OF ELECTRICAL ENERGY FROM A GIVEN SEA STATE;313
25.3;16.3 HYDRAULIC VERIFICATIONS;316
25.4;16.4 FORTRAN PROGRAMS;321
25.5;16.5 WORKED EXAMPLE;328
25.6;16.6 OVERALL DESIGN;329
25.7;16.7 CONCLUSION;333
25.8;REFERENCES;333
26;Index;336


Symbols
(Some symbols used in only one section are not included in the list.) a    Wave amplitude a    Triangle (ETS) height A    Absorption coefficient ax, ay, az    Particle acceleration b    Width b    Threshold or given value of the surface elevation b    Threshold or given value of a wave crest height b    Triangle (ETS) base c    Wave propagation speed C    Height of a wave crest C    Energy-flux/energy factor Cd    Diffraction coefficient Cr    Refraction coefficient Cs    Shoaling coefficient Cdg    Drag coefficient Cin    Inertia coefficient cG    Group velocity cR    Propagation speed of the reflected wave energy d    Water depth D    Diameter D    Directional distribution D    Persistence above a fixed threshold    Mean wave energy per unit surface    Dimensionless frequency spectrum E    Frequency spectrum (omnidirectional spectrum) EP    Electrical power f    Frequency f    General function F    General function F    Function in the diffraction theory fx, fy, fz    Force per unit length Fx, Fy, Fz    Force, or force per unit length R    Phase-speed reduction factor g    Acceleration due to gravity G    Function in the diffraction theory h    Threshold or given value of the significant wave height h    Energy per unit weight at various locations of a converter H    Wave height Hs    Significant wave height Hs0    Significant wave height on deep water k    Wave number k    Exponent in the gas law K    Constant K    Head loss factor K', K?    Parameters regression base height of ETS K1, K2    Parameters distribution wave heights in a sea state K0    Parameter relationship between Tp and Hs for wind seas KE    Keleugan–Carpenter number K(n)    Normalizing factor directional distribution L    Lifetime of a structure L    Wavelength L0    Wavelength on deep water Lp    Wavelength relevant to wave period Tp Lp0    Wavelength, on deep water, relevant to wave period Tp mj    jth spectral moment (with angular frequencies) m0    Variance of the surface elevation of a sea state M    Determinant of a covariance matrix M    Moment of a force Ma    Air mass Mij    i,j cofactor of a covariance matrix np    Width parameter of the directional distribution at the peak frequency p    Pressure p    Probability density function P    Probability of exceedance    Probability pa    Absolute pressure air Q    Flow rate per unit length r    Polar coordinate R    Radius R    Return period R    Resonance coefficient s    Local propagation axis S    Directional spectrum t    Time to    Special time instant T    Wave period T    Time lag T*    Lag of the absolute minimum of the autocovariance Tp    Peak period Th    Period of a very large wave Tm    Mean wave period u    Dummy variable u    Current velocity u    Wind speed at an elevation of 10 m above the mean sea surface u    Velocity in the vertical duct of a U-OWC u    Parameter of the Weibull 2-parameter distribution vx, vy, vz    Particle velocity w    Dummy variable w    Dimensionless frequency (=?/?p) w    Parameter of the Weibull 2-parameter distribution x    Dummy variable x    Horizontal coordinate axis xo    Fixed value of x X    Space lag y    Horizontal coordinate axis yo    Fixed value of y Y    Space lag    Fetch z    Vertical coordinate axis with origin at the still water level a    Angle between x-axis and direction of wave advance a    Quotient between wave height and RMS surface elevation of a sea state ?    Energy scale parameter JONSWAP spectrum (a in the original paper) ß    Dimensionless wave height with a universal distribution ß    Polar coordinate ß    Ratio between the wave height at a U-OWC and the wave height at a vertical breakwater ?    Specific weight of water ?p    Wave pressure ??    Angular frequency resolution e    Phase angle ?    Vertical coordinate axis with origin at the seabed ?    Surface elevation (assumed to have a zero mean) ?    Angle between the y-axis and the direction of wave advance ?d    Angle of the dominant direction ?    Sea bottom slope ?    Chinematic viscosity ?    Dummy variable whose domain is (0,1) ?    Ratio between crest height and wave height ?    Height of the air pocket of a U-OWC ?    Water density s    RMS surface elevation of a sea state t    Time lag between crest and trough t    Ratio between a time lag T and peak period Tp t    Time lag covariance pressure-discharge in a converter ?    Velocity potential F    Cross-covariance of surface elevation and velocity...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.