Buch, Englisch, 976 Seiten, Format (B × H): 170 mm x 240 mm
Second Edition
Buch, Englisch, 976 Seiten, Format (B × H): 170 mm x 240 mm
ISBN: 978-3-527-40664-7
Verlag: WILEY-VCH
Diese zweite Auflage des erfolgreichen eigenständigen Lehrbuchs zu einem interdisziplinär geprägten Thema wurde durchgehend aktualisiert, korrigiert und durchgesehen. Die Autoren erklären, wie kleine Teilchen Licht absorbieren und streuen -- beiden Phänomenen wird das gleiche Gewicht beigemessen.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Chapter 1. Introduction
1.1 What is a Small Particle?
1.2 Scattering, Emission, and Absorption as Observable Phenomena
1.3 Detecting and Imaging
1.4 Elastic, Quasielastic, and Inelastic Scattering
1.5 Scattering, Emission, and Absorption: Theoretical Interpretation
1.6 Physics of Scattering by a Single Particle
1.7 Direct and Inverse Problems
Chapter 2. Electromagnetic Theory
2.1 Field Vectors and the Maxwell Equations
2.2 Time-Harmonic Fields
2.3 Frequency-Dependent Constitutive Parameters
2.4 Poynting Vector
2.5 Plane Waves in Unbounded Media
2.6 Plane Waves in Bounded Media
2.7 Reflection and Transmission by a Slab
2.8 Scattering Interpretation of Reflection and Transmission
2.9 Measurement of Optical Constants
2.10 Polarization
2.11 Slab and Particle: Similarities and Differences
Chapter 3. Absorption and Scattering by an Arbitrary Particle
3.1 General Formulation of the Problem
3.2 Amplitude Scattering Matrix
3.3 Scattering Matrix
3.4 Extinction, Scattering, and Absorption
Chapter 4. Absorption, Scattering, and Emission by a Sphere
4.1 Solutions to the Vector Helmholtz Equation
4.2 Expansion of a Plane Wave in Spherical Vector Wave Functions
4.3 Internal and Scattered Fields
4.4 Cross Sections and Matrix Elements
4.5 Asymmetry Parameter, Radiation Force, and Torque
4.6 Radar Backscattering Cross Section
4.7 Thermal Emission
4.8 Sphere on or Above a Substrate
Chapter 5. Particles Small Compared with the Wavelength
5.1 Sphere Small Compared with the Wavelength
5.2 Electrostatic (Quasistatic) Approximation
5.3 Ellipsoid in the Electrostatic Approximation
5.4 Coated Ellipsoid
5.5 Polarizability Tensor
5.6 Anisotropic Sphere
5.7 Scattering Matrix
5.8 Rayleigh, Smoluchowski, Einstein, Fluctuation Theory of Scattering
Chapter 6. Rayleigh-Gans Approximation
6.1 Amplitude Scattering Matrix
6.2 Homogeneous Sphere
6.3 Finite Cylinder
Chapter 7. Geometrical Optics
7.1 Absorption and Scattering Cross Sections of a Sphere
7.2 Rainbow Angles
7.3 Glory Scattering
7.4 Scattering by Prisms: Ice-Crystal Halos
7.5 Scattering by Axially-Illuminated Spheroids
Chapter 8. A Potpourri of Particles
8.1 Uniformly Coated Sphere
8.2 Isotropic Chiral Sphere
8.3 Infinite Right Circular Cylinder
8.4 Spheroids
8.5 Anisotropic Sphere
8.6 Particle in an Absorbing Medium
8.7 Fraunhofer Approximation: Nonspherical Particles
8.8 Randomly Sparse Clusters of Small Spheres
8.9 Clusters of Arbitrary Spheres and Other Regular Particles
8.10 Heterogeneous Media and Particles: Effective-Medium Theories
8.11 A Survey of Numerical Methods for Irregular Particles
OPTICAL PROPERTIES OF BULK MATTER
Chapter 9. Classical Theories of Optical Constants
9.1 The Lorentz Model
9.2 The Multiple-Oscillator Model
9.3 The Anisotropic Oscillator Model
9.4 The Drude Model
9.5 The Debye Relaxation Model
9.6 General Relationship Between e and µ
Chapter 10. Measured Optical Constants
10.1 Optical Properties of an Insulator: Magnesium Oxide
10.2 Optical Properties of a Metal: Aluminum
10.3 Optical Properties of a Non-Free-Electron Metal: Gold
10.4 Optical Properties of a Polar Liquid: Water
10.5 The Magnitude of k
10.6 Validity of Bulk Optical Constants in Small-Particle Calculations
10.7 Summary of Absorption Mechanisms
OPTICAL PROPERTIES OF PARTICLES
Chapter 11. Extinction
11.1 Extinction = Absorption + Scattering
11.2 Extinction Survey
11.3 Some Extinction Effects in Nonmetallic Spheres
11.4 Ripple Structure
11.5 Christiansen Filter
11.6 Absorption Effects in Extinction
11.7 Extinction by Nonspherical Particles
11.8 Extinction Measurements
11.9 Extinction: A Synopsis
Chapter 12. Surface Modes in Small Particles
12.1 Surface Modes of Small Spheres
12.2 Surface Modes of Nonspherical Particles
12.3 Vibrational Modes in Insulators
12.4 Electronic Modes in Metals
Chapter 13. Directional Dependence of Scattering
13.1 Scattering of Unpolarized and Linearly Polarized Light
13.2 Measurement and Particle Production Techniques
13.3 Measurements on Single Particles
13.4 Some Theoretical and Experimental Results
13.5 Particle Sizing
13.6 Scattering Matrix Symmetry
13.7 Measuring the Scattering Matrix
13.8 Some Results for the Scattering Matrix
13.9 Summary: Applicability of Lorenz-Mie Theory