Bohren / Huffman / Clothiaux | Interactions of Light with Small Particles | Buch | 978-3-527-40664-7 | www.sack.de

Buch, Englisch, 976 Seiten, Format (B × H): 170 mm x 240 mm

Bohren / Huffman / Clothiaux

Interactions of Light with Small Particles

Second Edition
1. Auflage 2026
ISBN: 978-3-527-40664-7
Verlag: WILEY-VCH

Second Edition

Buch, Englisch, 976 Seiten, Format (B × H): 170 mm x 240 mm

ISBN: 978-3-527-40664-7
Verlag: WILEY-VCH


Diese zweite Auflage des erfolgreichen eigenständigen Lehrbuchs zu einem interdisziplinär geprägten Thema wurde durchgehend aktualisiert, korrigiert und durchgesehen. Die Autoren erklären, wie kleine Teilchen Licht absorbieren und streuen -- beiden Phänomenen wird das gleiche Gewicht beigemessen.

Bohren / Huffman / Clothiaux Interactions of Light with Small Particles jetzt bestellen!

Weitere Infos & Material


Chapter 1. Introduction
1.1 What is a Small Particle?
1.2 Scattering, Emission, and Absorption as Observable Phenomena
1.3 Detecting and Imaging
1.4 Elastic, Quasielastic, and Inelastic Scattering
1.5 Scattering, Emission, and Absorption: Theoretical Interpretation
1.6 Physics of Scattering by a Single Particle
1.7 Direct and Inverse Problems
 
Chapter 2. Electromagnetic Theory
2.1 Field Vectors and the Maxwell Equations
2.2 Time-Harmonic Fields
2.3 Frequency-Dependent Constitutive Parameters
2.4 Poynting Vector
2.5 Plane Waves in Unbounded Media
2.6 Plane Waves in Bounded Media
2.7 Reflection and Transmission by a Slab
2.8 Scattering Interpretation of Reflection and Transmission
2.9 Measurement of Optical Constants
2.10 Polarization
2.11 Slab and Particle: Similarities and Differences
 
Chapter 3. Absorption and Scattering by an Arbitrary Particle
3.1 General Formulation of the Problem
3.2 Amplitude Scattering Matrix
3.3 Scattering Matrix
3.4 Extinction, Scattering, and Absorption
 
Chapter 4. Absorption, Scattering, and Emission by a Sphere
4.1 Solutions to the Vector Helmholtz Equation
4.2 Expansion of a Plane Wave in Spherical Vector Wave Functions
4.3 Internal and Scattered Fields
4.4 Cross Sections and Matrix Elements
4.5 Asymmetry Parameter, Radiation Force, and Torque
4.6 Radar Backscattering Cross Section
4.7 Thermal Emission
4.8 Sphere on or Above a Substrate
 
Chapter 5. Particles Small Compared with the Wavelength
5.1 Sphere Small Compared with the Wavelength
5.2 Electrostatic (Quasistatic) Approximation
5.3 Ellipsoid in the Electrostatic Approximation
5.4 Coated Ellipsoid
5.5 Polarizability Tensor
5.6 Anisotropic Sphere
5.7 Scattering Matrix
5.8 Rayleigh, Smoluchowski, Einstein, Fluctuation Theory of Scattering
 
Chapter 6. Rayleigh-Gans Approximation
6.1 Amplitude Scattering Matrix
6.2 Homogeneous Sphere
6.3 Finite Cylinder
 
Chapter 7. Geometrical Optics
7.1 Absorption and Scattering Cross Sections of a Sphere
7.2 Rainbow Angles
7.3 Glory Scattering
7.4 Scattering by Prisms: Ice-Crystal Halos
7.5 Scattering by Axially-Illuminated Spheroids
 
Chapter 8. A Potpourri of Particles
8.1 Uniformly Coated Sphere
8.2 Isotropic Chiral Sphere
8.3 Infinite Right Circular Cylinder
8.4 Spheroids
8.5 Anisotropic Sphere
8.6 Particle in an Absorbing Medium
8.7 Fraunhofer Approximation: Nonspherical Particles
8.8 Randomly Sparse Clusters of Small Spheres
8.9 Clusters of Arbitrary Spheres and Other Regular Particles
8.10 Heterogeneous Media and Particles: Effective-Medium Theories
8.11 A Survey of Numerical Methods for Irregular Particles
 
OPTICAL PROPERTIES OF BULK MATTER
 
Chapter 9. Classical Theories of Optical Constants
9.1 The Lorentz Model
9.2 The Multiple-Oscillator Model
9.3 The Anisotropic Oscillator Model
9.4 The Drude Model
9.5 The Debye Relaxation Model
9.6 General Relationship Between e and µ
 
Chapter 10. Measured Optical Constants
10.1 Optical Properties of an Insulator: Magnesium Oxide
10.2 Optical Properties of a Metal: Aluminum
10.3 Optical Properties of a Non-Free-Electron Metal: Gold
10.4 Optical Properties of a Polar Liquid: Water
10.5 The Magnitude of k
10.6 Validity of Bulk Optical Constants in Small-Particle Calculations
10.7 Summary of Absorption Mechanisms
 
OPTICAL PROPERTIES OF PARTICLES
 
Chapter 11. Extinction
11.1 Extinction = Absorption + Scattering
11.2 Extinction Survey
11.3 Some Extinction Effects in Nonmetallic Spheres
11.4 Ripple Structure
11.5 Christiansen Filter
11.6 Absorption Effects in Extinction
11.7 Extinction by Nonspherical Particles
11.8 Extinction Measurements
11.9 Extinction: A Synopsis
 
Chapter 12. Surface Modes in Small Particles
12.1 Surface Modes of Small Spheres
12.2 Surface Modes of Nonspherical Particles
12.3 Vibrational Modes in Insulators
12.4 Electronic Modes in Metals
 
Chapter 13. Directional Dependence of Scattering
13.1 Scattering of Unpolarized and Linearly Polarized Light
13.2 Measurement and Particle Production Techniques
13.3 Measurements on Single Particles
13.4 Some Theoretical and Experimental Results
13.5 Particle Sizing
13.6 Scattering Matrix Symmetry
13.7 Measuring the Scattering Matrix
13.8 Some Results for the Scattering Matrix
13.9 Summary: Applicability of Lorenz-Mie Theory


Craig F. Bohren is Distinguished Professor Emeritus of Meteorology at the Pennsylvania State University. During the academic year 1986-87 he was Visiting Professor of Physics and Astronomy at Dartmouth College, in 1993 the Selby Fellow of the Australian Academy of Sciences, and in 1994 Visiting Professor of Physics at Trinity University. In 1988 he was elected a Fellow of the Optical Society of America. Professor Bohren is the author of several books, and the first recipient of the American Meteorological Society's Louis J. Battan Award for Authors.
 
Eugen E. Clothiaux is an Associate Professor of Meteorology at the Pennsylvania State University. He received his doctoral degree in physics from Brown University in 1990, then went on to the Pennsylvania State University to become a post-doctoral fellow in 1991. He remained there as a Research Associate for five years before becoming an Assistant Professor in 1999. Dr. Clothiaux has written several contributions on millimeter wave cloud radar and atmospheric radiation.
 
Donald R. Huffman is Regents Professor of Physics at the University of Arizona. In 1983 he and colleague Wolfgang Krätschmer produced the first sample of C60, buckminsterfullerene. The two scientists were honored with the MRS medal and shared in the 1994 Hewlett-Packard Europhysics Prize.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.