Boratto / Stilo / Faralli | Advances in Bias and Fairness in Information Retrieval | Buch | 978-3-030-78817-9 | sack.de

Buch, Englisch, Band 1418, 171 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 289 g

Reihe: Communications in Computer and Information Science

Boratto / Stilo / Faralli

Advances in Bias and Fairness in Information Retrieval

Second International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2021, Lucca, Italy, April 1, 2021, Proceedings
1. Auflage 2021
ISBN: 978-3-030-78817-9
Verlag: Springer International Publishing

Second International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2021, Lucca, Italy, April 1, 2021, Proceedings

Buch, Englisch, Band 1418, 171 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 289 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-030-78817-9
Verlag: Springer International Publishing


This book constitutes refereed proceedings of the Second International Workshop on Algorithmic Bias in Search and Recommendation, BIAS 2021, held in April, 2021. Due to the COVID-19 pandemic BIAS 2021 was held virtually. 
The 11 full papers and 3 short papers were carefully reviewed and selected from 37 submissions. The papers cover topics that go from search and recommendation in online dating, education, and social media, over the impact of gender bias in word embeddings, to tools that allow to explore bias and fairnesson the Web.
Boratto / Stilo / Faralli Advances in Bias and Fairness in Information Retrieval jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Towards Fairness-Aware Ranking by Defining Latent Groups Using Inferred Features.- Media Bias Everywhere? A Vision for Dealing with the Manipulation of Public Opinion.- Users' Perception of Search-Engine Biases and Satisfaction.- Preliminary Experiments to Examine the Stability of Bias-Aware Techniques.- Detecting Race and Gender Bias in Visual Representation of AI on Web Search Engines.- Equality of Opportunity in Ranking: A Fair-Distributive Model.- Incentives for Item Duplication under Fair Ranking Policies.- Quantification of the Impact of Popularity Bias in Multi-Stakeholder and Time-Aware Environment.- When is a Recommendation Model Wrong? A Model-Agnostic Tree-Based Approach to Detecting Biases in Recommendations.- Evaluating Video Recommendation Bias on YouTube.- An Information-Theoretic Measure for Enabling Category Exemptions with an Application to Filter Bubbles.- Perception-Aware Bias Detection for Query Suggestions.- Crucial Challenges in Large-Scale Black Box Analyses.- New Performance Metrics for Offline Content-based TV Recommender Systems.




Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.