Boukharouba / Chaari / Ben Amar | Computational Methods and Experimental Testing In Mechanical Engineering | E-Book | sack.de
E-Book

E-Book, Englisch, 196 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

Boukharouba / Chaari / Ben Amar Computational Methods and Experimental Testing In Mechanical Engineering

Selected Papers from the 6th Algerian Congress on Mechanics, CAM 2017, November 26-30, 2017, Constantine, Algeria
1. Auflage 2019
ISBN: 978-3-030-11827-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Selected Papers from the 6th Algerian Congress on Mechanics, CAM 2017, November 26-30, 2017, Constantine, Algeria

E-Book, Englisch, 196 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

ISBN: 978-3-030-11827-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book covers a variety of topics in mechanics, with a special emphasis to fluid mechanics and energy transfer. Chapters are based on selected contributions presented during the Algerian Congress of Mechanics (CAM 2017), held on November 26 - 30, 2017, in Constantine, Algeria. The book covers theoretical analysis, modeling, and numerical treatment of performance-related problems of new refrigeration systems, heating and cooling. It reports on experimental research to solve problems related to the flow of microfluids, and relevant applications in the areas of chemical engineering, biochemistry, biomedicine and renewable energy. Further topics include methods for maintenance of mechanical structures, strength, wear, fracture, damage and life of structures, and image processing solutions for the design and 3D manufacturing of mechanical parts. Improvement, control and regulation of urban road traffic are also discussed in this book, thus offering a comprehensive, practice-oriented reference guide for academics and professionals.
Boukharouba / Chaari / Ben Amar Computational Methods and Experimental Testing In Mechanical Engineering jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Foreword;6
2;Contents;8
3;Mixing-Time in T-Mixer Reactor;10
3.1;1 Introduction;10
3.2;2 Experimental Setup;11
3.2.1;2.1 Experimental Device;11
3.2.2;2.2 Results and Discussions;13
3.3;3 Numerical Setup;13
3.3.1;3.1 Geometry and Meshing;13
3.3.2;3.2 Theory;14
3.3.3;3.3 Results and Discussions;15
3.4;4 Conclusions;16
3.5;References;17
4;Thermal Hydraulic Modeling of a Nuclear Reactor Core Channel Using CFD; Application for an EPR;18
4.1;1 Introduction;18
4.2;2 Equation Set-Up;19
4.3;3 Essential Core and Thermal-Hydraulic Parameters of EPR;21
4.4;4 Results and Discussion;23
4.5;5 Conclusions;24
4.6;References;25
5;Thermochemical Modeling in Hypersonic Reactive Flow Behind Strong Shock Wave;26
5.1;1 Introduction;26
5.2;2 System of Equations;27
5.3;3 Results and Discussion;32
5.4;4 Conclusion;33
5.5;References;34
6;Kinematic and Dynamic Modeling and Simulation Analysis of a Cable-Driven Continuum Robot;35
6.1;1 Introduction;35
6.2;2 Planar Cable-Driven Continuum Robot and Description;37
6.3;3 Kinematic Modeling;37
6.3.1;3.1 Modeling Assumptions;38
6.3.2;3.2 Kinematics Modeling;38
6.4;4 Dynamic Modeling;39
6.4.1;4.1 Kinetic Energy of the P-CDCR;39
6.4.2;4.2 Kinetic Energy of the P-CDCR;39
6.4.3;4.3 Dynamical Model of the P-CDCR;40
6.5;5 Simulation Studies;40
6.5.1;5.1 Matlab Simulation Run;41
6.5.2;5.2 Solidworks Simulation Run;41
6.6;6 Conclusion;44
6.7;References;44
7;A Novel Constitutive Modelling for Spring Back Prediction in Sheet Metal Forming Processes;46
7.1;1 Introduction;46
7.2;2 Experimental Traction Data;47
7.3;3 Numerical Simulation of Tensile Test Experienced by Sheet Specimens of Titanium T40 Alloy;47
7.3.1;3.1 Without Considering the Material Heterogeneity;47
7.3.2;3.2 By Considering the Material Heterogeneity;50
7.4;4 Numerical Simulation of L-Bending Operation with SB Stage;54
7.5;5 Conclusion;56
7.6;References;56
8;Microstructural Analysis of Nickel-Based Composite Coatings and Their Effect on Micro-hardness and Nano-indentation Behavior;58
8.1;1 Introduction;58
8.2;2 Experimental Procedure;59
8.3;3 Results and Discussion;60
8.4;4 Conclusion;67
8.5;References;68
9;Effect of Slag and Natural Pozzolan on the Mechanical Behavior of Recycled Glass Mortars;70
9.1;1 Introduction;70
9.2;2 Materials;72
9.3;3 Experimental Methods;73
9.4;4 Results and Discussion;75
9.4.1;4.1 Bending Strength Test Results;75
9.4.2;4.2 Compressive Strength Test Results;79
9.5;5 Conclusion;81
9.6;References;81
10;Buckling Analysis of Isotropic and Composite Laminated Plates: New Finite Element Formulation;83
10.1;1 Introduction;83
10.2;2 Kinematic;84
10.3;3 Constitutive Equations;84
10.4;4 Virtual Work Principle;85
10.5;5 Finite Element Formulation;87
10.5.1;5.1 Nodal Approximation;87
10.5.2;5.2 Deformations and Nodal Displacements Relations;88
10.6;6 Results and Discussion;89
10.6.1;6.1 Convergence Study;89
10.6.2;6.2 The Orthotropic Effect on Cross-Ply Square Plates (0/90);89
10.7;7 Conclusion;90
10.8;References;91
11;Prediction of Optimal Lifetime of the Tool’s Wear in Turning Operation of AISI D3 Steel Based on the a New Spectral Indicator SCG;93
11.1;1 Introduction;93
11.2;2 Lifetime Theory;94
11.3;3 Spectral Center of Gravity—SCG;95
11.4;4 Experimental Validation and Data Acquisition;96
11.5;5 Results and Discussion;97
11.5.1;5.1 Vibration Signals and Characterization of Cutting Wear;97
11.5.2;5.2 Spectral Analysis of Characteristic Frequencies;98
11.5.3;5.3 Proposed Spectrum Indicators;101
11.6;6 Conclusion;104
11.7;References;105
12;The Evaluation of the Dynamic Response of the Moving Exciter Due to the Irregularities of the Slab;107
12.1;1 Introduction;107
12.2;2 Path Surface Model;108
12.3;3 Mobile Exciter-Path Surface Coupled Equation of Motion;110
12.3.1;3.1 Solving Method Algorithm;111
12.3.2;3.2 Validation Exemple;111
12.3.3;3.3 Stability Roadway Irregularities Influence;113
12.4;4 Conclusion;114
12.5;References;114
13;Rolling Bearing Local Fault Detection During a Run-Up Test Using Wavelet-Filtered CEEMDAN Envelopes;115
13.1;1 Introduction;115
13.2;2 Tools and Methodology;116
13.3;3 Application;118
13.4;4 Conclusion;122
13.5;References;123
14;Industrial Reproduction of Objects with Freeform Surfaces Using Reverse Engineering Process;124
14.1;1 Introduction;124
14.2;2 Exploited Equipments;125
14.3;3 Reproduction Procedure;126
14.4;4 Variances Analysis;130
14.5;5 Cavity Mold Prototype Realization;131
14.6;6 Conclusions;132
14.7;References;132
15;Effect of Boundary Conditions and Damping on Critical Speeds of a Flexible Mono Rotor;134
15.1;1 Introduction;134
15.2;2 Model Equations Implementation;135
15.3;3 Natural Frequencies and Campbell Diagrams;139
15.4;4 Response to the Synchronous Force (Unbalance);140
15.5;5 Response to an Asynchronous Force;143
15.6;6 Conclusion;146
15.7;References;148
16;Remaining Life Estimation of the High Strength Low Alloy Steel Pipelines by Using Response Surface Methodology;149
16.1;1 Introduction;149
16.2;2 Theory;150
16.3;3 Experimental Procedure;150
16.4;4 Results and Discussion;150
16.4.1;4.1 Meshing of the Rectangular Plate;151
16.4.2;4.2 T Stress Along the Ligament;152
16.4.3;4.3 Limit State Function for Reliability Analysis;154
16.5;5 Conclusion;155
16.6;References;156
17;Implementation and Experimentation of (VSI) Applied for a Photovoltaic System;157
17.1;1 Introduction;157
17.2;2 Theory;158
17.2.1;2.1 Photovoltaic Generator Model;158
17.2.2;2.2 Modeling and Control of Dc-Dc Converter;159
17.2.3;2.3 Inverter Model;162
17.2.4;2.4 Theory of SVPWM Technique;164
17.3;3 Implementation and Experiments;167
17.3.1;3.1 Results and Discussion;168
17.4;4 Conclusion;169
17.5;References;170
18;CFD Study About an Archimed Wind Mill;171
18.1;1 Introduction;171
18.2;2 Archimede WIND MILL ‘AWM’;172
18.3;3 Theory;173
18.4;4 Results and Discussion;175
18.5;5 Conclusion;178
18.6;References;178
19;Periodic Inspection Policy for a System with Two Levels of Degradation;179
19.1;1 Introduction;179
19.2;2 Reliability of the DT Model (Degradation Threshold Model);180
19.2.1;2.1 System Description;180
19.2.2;2.2 Degradation Threshold Model (DT);181
19.3;3 Inspection Policy (?T, B) for a System with Two Levels of Degradation;182
19.4;4 Numerical Example;184
19.4.1;4.1 Presentation of Data;185
19.4.2;4.2 Influence of Model Parameters on ( DT_opt ,B_opt );185
19.5;5 Discussion of Results;186
19.6;6 Conclusion;187
19.7;References;187
20;Modeling of Elastic and Mechanical Properties of ZnS Using Mehl Method;189
20.1;1 Introduction;189
20.2;2 Theoretical Section;190
20.3;3 Results and Discussions;191
20.3.1;3.1 Elastic and Mechanical Properties Under Ambient Conditions at P = 0 GPa;191
20.3.2;3.2 Elastic and Mechanical Properties Under Pressure;193
20.4;4 Conclusion;195
20.5;References;195



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.