Bradshaw / Dennis | Functioning of Transmembrane Receptors in Signaling Mechanisms | E-Book | www.sack.de
E-Book

E-Book, Englisch, 456 Seiten, Web PDF

Bradshaw / Dennis Functioning of Transmembrane Receptors in Signaling Mechanisms

Cell Signaling Collection
1. Auflage 2011
ISBN: 978-0-12-382212-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

Cell Signaling Collection

E-Book, Englisch, 456 Seiten, Web PDF

ISBN: 978-0-12-382212-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



A primary component of cell signaling research, this title covers the principal membrane-bound receptor families, including their structural organization. Written and edited by experts in the field, this book provides up-to-date research on transmembrane signaling entities and their initiating responses following extracellular stimulation. - Articles written and edited by experts in the field - Thematic volume covering effectors, cytosolic events, nuclear, and cytoplasmic events - Up-to-date research on signaling systems and mutations in transcription factors that provide new targets for treating disease

Bradshaw / Dennis Functioning of Transmembrane Receptors in Signaling Mechanisms jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Functioning of Transmembrane Receptors in Cell Signaling;4
3;Copyright Page;5
4;Editorial Advisory Board;6
5;Contents;8
6;Preface;12
7;Contributors;14
8;Section A: Overview;18
8.1;Chapter 1: Transmembrane Receptors and Their Signaling Properties;20
8.1.1;Origins of Cell Signaling Research;20
8.1.2;Transmembrane Receptors;21
8.1.3;Focus and Scope of this Volume;23
8.1.4;References;24
9;Section B: Biophysical Principles and General Properties;26
9.1;Chapter 2: Structural and Energetic Basis of Molecular Recognition;28
9.1.1;Introduction;28
9.1.2;Principles of Binding;28
9.1.3;Non-Specific Association with Membrane Surfaces;29
9.1.4;Protein – Protein Interactions;29
9.1.5;Prospects;29
9.1.6;References;30
9.2;Chapter 3: Free Energy Landscapes in Protein – Protein Interactions;32
9.2.1;Thermodynamics of Protein – Protein Interactions;32
9.2.2;Interaction Kinetics;33
9.2.3;Dissociation of a Protein Complex;35
9.2.4;The Modular Structure of Protein – Protein Binding Sites;35
9.2.5;Interaction Between Membrane Anchored Proteins;36
9.2.6;Summary;37
9.2.7;References;37
9.3;Chapter 4: Molecular Sociology;40
9.3.1;Transmembrane Signaling Paradigms;40
9.3.2;Structural Basis of Protein – Protein Recognition;43
9.3.3;Conclusion;44
9.3.4;References;44
9.4;Chapter 5: FRET Analysis of Signaling Events in Cells;46
9.4.1;Introduction;46
9.4.2;Fluorescent Probes for Fret;46
9.4.3;Fret Detection Techniques;47
9.4.4;Conclusions and Prospects;49
9.4.5;References;49
9.5;Chapter 6: Structures of Serine/Threonine and Tyrosine Kinases;52
9.5.1;Introduction;52
9.5.2;Structural Features of Serine/Threonine and Tyrosine Kinases;52
9.5.3;Regulation of Serine/Threonine and Tyrosine Kinase Activity;53
9.5.4;Prospects;55
9.5.5;Acknowledgements;55
9.5.6;References;55
9.6;Chapter 7: Large-Scale Structural Analysis of Protein Tyrosine Phosphatases;58
9.6.1;Overview;58
9.6.2;Structural Coverage of the Family;58
9.6.3;Structural Features;58
9.6.4;A Shared Catalytic Mechanism;60
9.6.5;Receptor Dimerization;62
9.6.6;Endnote;62
9.6.7;References;63
9.7;Chapter 8: Transmembrane Receptor Oligomerization;64
9.7.1;Introduction;64
9.7.2;Tyrosine Kinase-Containing Receptors;65
9.7.3;Cytokine Receptors;65
9.7.4;Guanylyl Cyclase-Containing Receptors;67
9.7.5;Serine/Threonine Kinase-Containing Receptors;67
9.7.6;Tumor Necrosis Factor Receptors;67
9.7.7;Heptahelical Receptors (G-Proteincoupled Receptors);68
9.7.8;Concluding Remarks;68
9.7.9;References;68
10;Section C: Major Receptor Families;70
10.1;Part 1: Receptor Tyrosine Kinases;72
10.1.1;Chapter 9: Protein Tyrosine Kinase Receptor Signaling Overview;74
10.1.1.1;Introduction;74
10.1.1.2;PTK Subfamilies;74
10.1.1.3;Mechanism of Activation;75
10.1.1.4;Control of PTK Receptor Activity;78
10.1.1.5;Cross-Talk Between Signaling Pathways;78
10.1.1.6;PTK Receptors and Disease;79
10.1.1.7;Acknowledgements;80
10.1.1.8;References;80
10.1.2;Chapter 10: Receptor Tyrosine Kinase Signaling and Ubiquitination;82
10.1.2.1;Introduction;82
10.1.2.2;The Ubiquitin Conjugation System;82
10.1.2.3;RTK Signaling and Endocytosis are Molecularly Linked;82
10.1.2.4;Ubiquitination in RTK Endocytosis;83
10.1.2.5;Ubiquitination of Effector Proteins in RTK Signaling;84
10.1.2.6;Concluding Remarks and Future Perspectives;84
10.1.2.7;Acknowledgements;84
10.1.2.8;References;85
10.1.3;Chapter 11: Insulin Receptor Complex and Signaling by Insulin;86
10.1.3.1;Introduction;86
10.1.3.2;Insulin Receptor Domain Structure;86
10.1.3.3;Binding Determinants of the Insulin Receptor;87
10.1.3.4;Insulin Signaling to Glucose Transport;88
10.1.3.5;Acknowledgements;90
10.1.3.6;References;90
10.1.4;Chapter 12: Structure and Mechanism of the Insulin Receptor Tyrosine Kinase;92
10.1.4.1;Introduction;92
10.1.4.2;Protein Recruitment to the Activated Insulin Receptor;93
10.1.4.3;Prospects;97
10.1.4.4;Acknowledgements;97
10.1.4.5;References;97
10.1.5;Chapter 13: IRS-Protein Scaffolds and Insulin/IGF Action in Central and Peripheral Tissues;100
10.1.5.1;Introduction;100
10.1.5.2;Insulin, Igfs, and their Receptors;100
10.1.5.3;Insulin Receptor Substrates;101
10.1.5.4;Dysregulation of IRS-Protein Signaling;104
10.1.5.5;Summary and Perspectives;107
10.1.5.6;References;107
10.1.6;Chapter 14: The Epidermal Growth Factor Receptor Family;112
10.1.6.1;Introduction;112
10.1.6.2;Structure and Activation of ERBB Receptors and their Ligands;112
10.1.6.3;ERBB-Induced Signaling Pathways;114
10.1.6.4;Specificity of Signaling Through the ERBB Network;114
10.1.6.5;Attenuation of the ERBB Signaling Network;115
10.1.6.6;ERBB Proteins and Pathological Conditions;116
10.1.6.7;Acknowledgements;117
10.1.6.8;References;117
10.1.7;Chapter 15: Epidermal Growth Factor Kinases and their Activation in Receptor Mediated Signaling;120
10.1.7.1;Introduction;120
10.1.7.2;EGFR Signaling Network Pathways;121
10.1.7.3;Structural Biology of Receptor Fragments;122
10.1.7.4;Conformations of the ECD Fragments of ErbB Receptors;122
10.1.7.5;Kinase Domain Fragment Structures;122
10.1.7.6;Biophysical Studies of ErbB Activation at the Cell Surface;123
10.1.7.7;ErbB Receptors Exist as Predominantly Pre-Formed Dimers in Cells;123
10.1.7.8;Beyond Dimers: A Ligand-Induced EGFR Tetramer is Formed During Activation;123
10.1.7.9;Activation-Dependent Higher-Order ErbB Oligomers in Cancer Cells;124
10.1.7.10;New Paradigm in ErbB Activation and Signaling;125
10.1.7.11;References;125
10.1.8;Chapter 16: Role of Lipid Domains in EGF Receptor Signaling;128
10.1.8.1;Introduction;128
10.1.8.2;Studying Lipid Rafts;129
10.1.8.3;Localization of the EGF Receptor in Lipid Rafts;129
10.1.8.4;Rafts and EGF Receptor-Mediated Signaling;130
10.1.8.5;The EGF Receptor and Caveolin;131
10.1.8.6;References;132
10.1.9;Chapter 17: Signaling by the Platelet-Derived Growth Factor Receptor Family;134
10.1.9.1;Platelet-Derived Growth Factor Isoforms;134
10.1.9.2;Physiological Function of PDGF;134
10.1.9.3;Activation of Platelet-Derived Growth Factor Receptors and Regulation of Kinase Activity;135
10.1.9.4;Interaction of the PDGF Receptors with Downstream Signal Transduction Molecules;135
10.1.9.5;Regulation and Modulation of PDGF Receptor Signaling;137
10.1.9.6;Conclusions;139
10.1.9.7;Acknowledgements;139
10.1.9.8;References;139
10.1.10;Chapter 18: The Fibroblast Growth Factor (FGF) Signaling Complex;142
10.1.10.1;Introduction;142
10.1.10.2;FGF Polypeptides;142
10.1.10.3;FGFR Tyrosine Kinases;143
10.1.10.4;Heparan Sulfate and Klothos;143
10.1.10.5;The Oligomeric FGF – FGFR – HS Signaling Complex;144
10.1.10.6;Intracellular Signal Transduction by the FGFR Complex;145
10.1.10.7;References;146
10.1.11;Chapter 19: The Mechanism of NGF Signaling Suggested by the p75 and TrkA Receptor Complexes;150
10.1.11.1;Introduction;150
10.1.11.2;Neurotrophins;150
10.1.11.3;NGF – TrkA Complexes;152
10.1.11.4;NGF – p75 NTR Complexes;153
10.1.11.5;Neurotrophin Signaling Excursions;154
10.1.11.6;Prospects for Ternary Receptor Complexes;155
10.1.11.7;Neurotrophin Therapeutics;155
10.1.11.8;References;155
10.1.12;Chapter 20: The Mechanism of VEGFR Activation by VEGF;160
10.1.12.1;Structural Characterization of VEGF Family Members;160
10.1.12.2;Structural Characterization of VEGFRs;161
10.1.12.3;Pdgfr and Analogies to VEGFRs;162
10.1.12.4;VEGF Co-Receptors: Neuropilins;163
10.1.12.5;Conclusion;163
10.1.12.6;References;164
10.1.13;Chapter 21: Mechanisms and Functions of Eph Receptor signaling;166
10.1.13.1;Introduction;166
10.1.13.2;Eph/Ephrin Protein Structures and Signaling Concepts;166
10.1.13.3;Regulation of Eph/Ephrin Signaling Activity;168
10.1.13.4;Disruption of Cell – Cell Contacts and Internalization of Signaling Complexes;168
10.1.13.5;Eph (Forward) Signaling;168
10.1.13.6;Ephrin (Reverse) Signaling;169
10.1.13.7;Cross-Talk with Other Signal Pathways;169
10.1.13.8;Eph/Ephrin Facilitated Cell - Cell Communication During Vertebrate Development;170
10.1.13.9;Ephs in Oncogenesis: De-Regulated Cell Positioning During Invasion and Metastasis;170
10.1.13.10;References;171
10.2;Part 2: Cytokine Receptors;174
10.2.1;Chapter 22: Overview of Cytokine Receptors;176
10.2.2;Chapter 23: Cytokine Receptor Signaling;178
10.2.2.1;Introduction;178
10.2.2.2;Generation of High-Affinity Cytokine – Receptor Complexes;178
10.2.2.3;Architecture of Extracellular Domain;178
10.2.2.4;Receptor Signaling-Utilizing EPO-R as a Model;180
10.2.2.5;Activation of the JAK Tyrosine Kinases;180
10.2.2.6;JAK1;181
10.2.2.7;JAK2;181
10.2.2.8;JAK3;181
10.2.2.9;TYK2;182
10.2.2.10;Recruitment and Activation of STAT Transcription Factors;182
10.2.2.11;STAT1;182
10.2.2.12;STAT2;182
10.2.2.13;STAT3;184
10.2.2.14;STAT4;184
10.2.2.15;STAT5;184
10.2.2.16;STAT6;185
10.2.2.17;Participation of the Phoshatidylinositol 3' Kinase Pathway in Cell Survival Signaling;185
10.2.2.18;ERK, JNK and P38 are All Activated Downstream of Cytokine Receptor Engagement;185
10.2.2.19;Negative Regulation;186
10.2.2.20;Developmental Regulation of the Cytokine Signaling Pathway;186
10.2.2.21;Involvement of the Cytokine Signaling Pathway in Human Disease;187
10.2.2.22;Concluding Remarks;188
10.2.2.23;Acknowledgements;188
10.2.2.24;References;190
10.2.3;Chapter 24: Growth Hormone and Prolactin Family of Hormones and Receptors: The Structural Basis for Receptor Activation and Regulation;194
10.2.3.1;Introduction;194
10.2.3.2;The Growth Hormone Family of Hormones and Receptors;194
10.2.3.3;Triggering GH and PRL Receptor Activation: Revision to the Dogma;194
10.2.3.4;An Unanticipated Role for Cytokine Hormones as Transcriptional Enhancers;195
10.2.3.5;Structural Basis for Receptor Homodimerization;196
10.2.3.6;Hormone Specificity and Cross-Reactivity Determines Physiological Roles;198
10.2.3.7;Concluding Remarks;198
10.2.3.8;References;199
10.2.4;Chapter 25: Erythropoietin Receptor as a Paradigm for Cytokine Signaling;202
10.2.4.1;Introduction;202
10.2.4.2;Structural Studies on EPOR;202
10.2.4.3;Biochemical Studies Supporting Preformed Dimers;205
10.2.4.4;Other Cytokine Receptor Superfamily Members;207
10.2.4.5;Conclusions;207
10.2.4.6;Acknowledgements;208
10.2.4.7;References;208
10.2.5;Chapter 26: Structure of IFN. and its Receptors;210
10.2.5.1;References;212
10.3;Part 3: G Protein-Coupled Receptors;214
10.3.1;Chapter 27: Structures of Heterotrimeric G Proteins and their Complexes;216
10.3.1.1;Introduction;216
10.3.1.2;G Subunits;216
10.3.1.3;G-Effector Interactions;219
10.3.1.4;GTP Hydrolysis by G and its Regulation by GAPs;219
10.3.1.5;Gß. Dimers;221
10.3.1.6;Receptor-Independent Regulators of G Protein Activation;222
10.3.1.7;Ga – GPCR Interactions;222
10.3.1.8;References;223
10.3.2;Chapter 28: G Protein-Coupled Receptor Structures;226
10.3.2.1;Introduction;226
10.3.2.2;Classification;226
10.3.2.3;Basic Concept of GPCR; Heterotrimeric G Proteins; The Vast Complexity of GPCR Signaling;228
10.3.2.4;Models for Receptor Activation;230
10.3.2.5;Structures of Extracellular Domains of GPCRs;230
10.3.2.6;Structures Probing the Inactive State(S): Ligand Entry, Binding, and Modes for Activity Blocking;230
10.3.2.7;Structure of Active State(S);232
10.3.2.8;Acknowledgements;234
10.3.2.9;References;234
10.3.3;Chapter 29: Heterotrimeric G-Protein Signaling at Atomic Resolution;236
10.3.3.1;Introduction;236
10.3.3.2;Architecture and Switching Mechanism of the Ga Subunits;236
10.3.3.3;Insight into the GTP Hydrolytic Mechanism from an Unexpected Transition State Mimic;237
10.3.3.4;Gß. with and without Ga;237
10.3.3.5;Phosducin and Gß.;238
10.3.3.6;GSa and Adenylyl Cyclase;238
10.3.3.7;Filling in the Gap;239
10.3.3.8;Visual Fidelity;239
10.3.3.9;What Structures May Follow;239
10.3.3.10;References;239
10.3.4;Chapter 30: Structure and Function of G-Protein-Coupled Receptors: Lessons from Recent Crystal Structures;242
10.3.4.1;Introduction;242
10.3.4.2;Recent Advances in Structural Studies of G-Protein-Coupled Receptors;242
10.3.4.3;Crystal Structures of Human ß2AR;244
10.3.4.4;Understanding Ligand Binding Specificity in GPCRs;245
10.3.4.5;Structural Basis of the Active State;245
10.3.4.6;References;246
10.3.5;Chapter 31: Chemokines and Chemokine Receptors: Structure and Function;248
10.3.5.1;Introduction;248
10.3.5.2;Chemokine Structure and Function;248
10.3.5.3;Chemokine Receptors;250
10.3.5.4;References;251
10.3.6;Chapter 32: The ß2 Adrenergic Receptor as a Model for G-Protein-Coupled Receptor Structure and Activation by Diffusible Hormone;254
10.3.6.1;Introduction;254
10.3.6.2;A Model System for GPCRs Recognizing Diffusible Ligands;254
10.3.6.3;Conformational States on the Pathway to Activation;255
10.3.6.4;Crystal Structures of the Human ß2AR;256
10.3.6.5;Comparison to the Structure of Rhodopsin;256
10.3.6.6;Mechanism of Agonist-Induced Activation;257
10.3.6.7;References;259
10.3.7;Chapter 33: Agonist-Induced Desensitization and Endocytosis of G-protein-Coupled Receptors;262
10.3.7.1;General Processes of GPCR Regulation;262
10.3.7.2;Mechanisms of GPCR Desensitization and Endocytosis;263
10.3.7.3;Functional Consequences of GPCR Endocytosis;265
10.3.7.4;References;266
10.3.8;Chapter 34: Functional Role(s) of Dimeric Complexes Formed from G-Protein-Coupled Receptors;270
10.3.8.1;Introduction;270
10.3.8.2;Historical Perspective;270
10.3.8.3;Heterodimerization Alters Receptor Function;272
10.3.8.4;Receptor Heterodimerization in Physiology and Pathology;274
10.3.8.5;Conclusion;276
10.3.8.6;Acknowledgements;276
10.3.8.7;References;276
10.4;Part 4: TGFß Receptors;280
10.4.1;Chapter 35: Receptor – Ligand Recognition in the TGFß Superfamily as Suggested by Crystal Structures of their Ectodomain Comple;282
10.4.1.1;Introduction;282
10.4.1.2;Ligand Structures;282
10.4.1.3;Receptor Structures;283
10.4.1.4;Receptor – Ligand Complexes;284
10.4.1.5;Concluding Remarks;287
10.4.1.6;Notes;287
10.4.1.7;References;288
10.4.2;Chapter 36: TGFß Signal Transduction;290
10.4.2.1;Introduction;290
10.4.2.2;TGFß Ligands;290
10.4.2.3;Receptors;291
10.4.2.4;Activation and Regulation of Receptors;292
10.4.2.5;The Smads: Effectors of TGFß Family Transcriptional Programs;293
10.4.2.6;Smad Activation;295
10.4.2.7;Regulation of TGFß Signal Transduction by Inhibitory Smads;295
10.4.2.8;Smads are DNA-Binding Proteins;296
10.4.2.9;Smads Cooperate with DNA-Binding Partners;296
10.4.2.10;Smads Interact with Transcription Co-Activators and Repressors;297
10.4.2.11;Non-Smad Signaling Pathways;297
10.4.2.12;References;298
10.4.3;Chapter 37: The Smads;302
10.4.3.1;History and Categorization: R-Smads, Co-Smads, and I-Smads;302
10.4.3.2;Smad Regulation by Receptors and Nucleocytoplasmic Shuttling;302
10.4.3.3;Transcriptional Regulation by Smads;302
10.4.3.4;Downregulation and Cross-Regulation of Smads;304
10.4.3.5;Function of Smads In Vivo: Gain of Function and Loss of Function Experiments;304
10.4.3.6;Acknowledgements;305
10.4.3.7;References;305
10.5;Part 5: TNF Receptors;308
10.5.1;Chapter 38: Structure and Function of Tumor Necrosis Factor (TNF) at the Cell Surface;310
10.5.1.1;Introduction;310
10.5.1.2;Structural Features;310
10.5.1.3;Signaling Pathways and Regulation;315
10.5.1.4;Biological Functions;315
10.5.1.5;Therapeutics and Future Expectations;316
10.5.1.6;Acknowledgement;317
10.5.1.7;References;317
10.5.2;Chapter 39: Tumor Necrosis Factor Receptor-Associated Factors in Immune Receptor Signal Transduction;322
10.5.2.1;Introduction;322
10.5.2.2;Discovery of TRAF Proteins;322
10.5.2.3;Biological Functions of TRAF Proteins;322
10.5.2.4;Domain Organizations and Structures of TRAFs;323
10.5.2.5;The Unique TRAF6;324
10.5.2.6;TRAF Signaling and LYS63 Linked Polyubiquitination;325
10.5.2.7;Regulation of TRAF Signaling;326
10.5.2.8;Summary and Perspectives;326
10.5.2.9;Acknowledgement;326
10.5.2.10;References;326
10.6;Part 6: Guanylyl Cyclases;330
10.6.1;Chapter 40: Guanylyl Cyclases;332
10.6.1.1;Historical Perspective;332
10.6.1.2;Overview of Mammalian Guanylyl Cyclases;332
10.6.1.3;Soluble Guanylyl Cyclase, Nitric Oxide, and Nitric Oxide Synthase;332
10.6.1.4;GC-A/NPR-A/NPR1;334
10.6.1.5;GC-B/NPR-B/NPR2;335
10.6.1.6;NPR-C/NPR-3;335
10.6.1.7;GC-C/STAR;335
10.6.1.8;GC-D;336
10.6.1.9;GC-E/RET-GC1 and GC-F/RET-GC2;336
10.6.1.10;GC-G;336
10.6.1.11;Acknowledgements;337
10.6.1.12;References;337
11;Section D: Other Transmembrane Signaling Proteins;342
11.1;Part 1: Adhesion Molecules;344
11.1.1;Chapter 41: Mechanistic Features of Cell-Surface Adhesion Receptors;346
11.1.1.1;Mechanosensory Mechanisms;346
11.1.1.2;Cell – Cell Adhesions/Adherens Junctions;347
11.1.1.3;T Cell Co-Stimulation;348
11.1.1.4;Axon Guidance and Neural Development;350
11.1.1.5;Conclusions;351
11.1.1.6;References;351
11.1.2;Chapter 42: Structural Basis of Integrin Signaling;354
11.1.2.1;Introduction;354
11.1.2.2;Structure;354
11.1.2.3;Quaternary Changes;355
11.1.2.4;Tertiary Changes;355
11.1.2.5;Tail Interactions;356
11.1.2.6;Concluding Remarks;356
11.1.2.7;References;356
11.1.3;Chapter 43: Carbohydrate Recognition and Signaling;358
11.1.3.1;Introduction;358
11.1.3.2;Biological Roles of Carbohydrate Recognition;358
11.1.3.3;Carbohydrate Structure and Diversity;358
11.1.3.4;Lectins and Carbohydrate Recognition;359
11.1.3.5;Carbohydrate-Mediated Signaling;359
11.1.3.6;Conclusions;362
11.1.3.7;References;362
11.2;Part 2: Ion Channels;366
11.2.1;Chapter 44: An Overview of Ion Channel Structure;368
11.2.1.1;Introduction;368
11.2.1.2;Obtaining Three-Dimensional Structures of Channels: Methods and Challenges;369
11.2.1.3;Prokaryotic Ion Channels: Gateways to Full Length Channel Structure;370
11.2.1.4;Open Channels;370
11.2.1.5;Eukaryotic Ion Channels at High Resolution: Whole Channels and Exploitation of Modular Structure to Divide and Conquer;371
11.2.1.6;Divide and Conquer: Exploitation of the Modular Nature of Ion Channel Structure;372
11.2.1.7;Ion Channel Complexes;373
11.2.1.8;References;373
11.2.2;Chapter 45: Voltage-Gated Calcium Channels;376
11.2.2.1;Physiological Roles of Voltage Gated Ca2+ Channels;376
11.2.2.2;Ca2+ Current Types Defined by Physiological and Pharmacological Properties;377
11.2.2.3;Molecular Properties of Ca2+ Channels;377
11.2.2.4;Ca2+ Channel Signaling Complexes;380
11.2.2.5;The Effector Checkpoint Model of Ca2+ Channel Regulation;383
11.2.2.6;References;383
11.2.3;Chapter 46: Store-Operated Calcium Channels;390
11.2.3.1;Store-Operated or Capacitative Calcium Entry;390
11.2.3.2;Store-Operated Channels – TRPs?;390
11.2.3.3;Major Players Identified: STIM and ORAI/CRACM;391
11.2.3.4;Signaling to Store-Operated Channels;391
11.2.3.5;References;392
11.2.4;Chapter 47: Intracellular Calcium Signaling;394
11.2.4.1;The “Calcium Signaling Toolkit” and Calcium Homeostasis;394
11.2.4.2;Channels Underlying Ca2+ Increase;395
11.2.4.3;Temporal Regulation of Ca2+ Signals;396
11.2.4.4;Spatial Regulation of Ca2+ Signals;397
11.2.4.5;References;398
11.2.5;Chapter 48: Cyclic Nucleotide-Regulated Cation Channels;400
11.2.5.1;Introduction;400
11.2.5.2;General Features of Cyclic Nucleotide-Regulated Cation Channels;400
11.2.5.3;CNG Channels;401
11.2.5.4;HCN Channels;402
11.2.5.5;Acknowledgement;403
11.2.5.6;References;403
11.3;Part 3: Immunoglobulin Receptors;406
11.3.1;Chapter 49: Immunoglobulin – Fc Receptor Interactions;408
11.3.1.1;Introduction;408
11.3.1.2;Immunoglobulin Structure;408
11.3.1.3;Fc Receptors and their Structures;409
11.3.1.4;IgG – Receptor Interactions;410
11.3.1.5;IgE – Receptor Interactions;411
11.3.1.6;IgA – Receptor Interactions;412
11.3.1.7;Conclusions;413
11.3.1.8;References;413
11.3.2;Chapter 50: T Cell Receptor/pMHC Complexes;416
11.3.2.1;TCR Generation and Architecture;416
11.3.2.2;Peptide Binding to MHC Class IA and II;417
11.3.2.3;TCR/pMHC Interaction;417
11.3.2.4;Orientation of the TCR in TCR/PMHC Complexes;417
11.3.2.5;Peptide Recognition by the TCR CDR Loops;418
11.3.2.6;Discrepancy Between Magnitude of Structural Changes and Biological Outcomes;419
11.3.2.7;Role of Bound Water in TCR/pMHC Recognition;420
11.3.2.8;Conclusions and Future Perspectives;420
11.3.2.9;References;421
11.3.3;Chapter 51: NK Receptors;424
11.3.3.1;Immunoreceptors;424
11.3.3.2;Natural Killer Cells;424
11.3.3.3;IG-Type NK Receptors: KIR;427
11.3.3.4;Other IG-Type Receptors on NK Cells;428
11.3.3.5;C-Type Lectin-Like NK Receptors: LY49A;428
11.3.3.6;C-Type Lectin-Like NK Receptors: NKG2D;429
11.3.3.7;References;429
11.3.4;Chapter 52: Toll-Like Receptors – Structure and Signaling;432
11.3.4.1;Structure of TLR3;432
11.3.4.2;The dsRNA Binding Site in hTLR3;432
11.3.4.3;TLR4;432
11.3.4.4;MD-2;434
11.3.4.5;TLR1 – TLR2 Dimerization by a Tri-Acylated Lipopeptide;435
11.3.4.6;Signaling;435
11.3.4.7;Acknowledgements;436
11.3.4.8;References;436
11.3.5;Chapter 53: Toll Family Receptors;438
11.3.5.1;Introduction;438
11.3.5.2;Structure – Function of Toll Receptors;438
11.3.5.3;Signaling by Toll Family Receptors;440
11.3.5.4;References;442
12;Index;444



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.