E-Book, Englisch, Band 644, 756 Seiten, eBook
Brezina / Brezina / Jablonski Mechatronics 2017
1. Auflage 2018
ISBN: 978-3-319-65960-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Recent Technological and Scientific Advances
E-Book, Englisch, Band 644, 756 Seiten, eBook
Reihe: Advances in Intelligent Systems and Computing
ISBN: 978-3-319-65960-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Mechatronics 2017 – Preface;6
2;Contents;7
3;Mechatronics;15
4;A Compact Device for Urine Collection and Transport in Porous Media;16
4.1;Abstract;16
4.2;1 Introduction;16
4.3;2 Materials and Methods;17
4.3.1;2.1 Equations;17
4.3.2;2.2 Methods;18
4.3.3;2.3 Experimenal Setup;20
4.4;3 Results and Discussion;20
4.4.1;3.1 Covered and Uncovered Capillary Flow;20
4.4.2;3.2 Vertical Capillary Flow in Folded Filter Paper;21
4.4.3;3.3 Horizontal Capillary Flow;22
4.5;4 Conclusion;22
4.6;5 Future Work;23
4.7;Acknowledgement;23
4.8;References;23
5;Innovation of Pressing with TRIZ Methodology;24
5.1;Abstract;24
5.2;1 Introduction;24
5.3;2 Map of the Problem - RCA Diagram;25
5.4;3 Contradictions and Possible Solutions;26
5.4.1;3.1 Inventive Tasks as Technical and Physical Contradictions - TC1 and PC1;26
5.4.2;3.2 Inventive Tasks as Another Contradictions to Be Solved;28
5.5;4 Implementation of Found Inventions into Innovation;29
5.6;5 Conclusion;31
5.7;Acknowledgements;31
5.8;References;31
6;Evaluation of Postural Stability During Quiet Standing Using MatLab Software and Promising Parameters;32
6.1;Abstract;32
6.2;1 Introduction;32
6.3;2 Methods;33
6.3.1;2.1 Measurement Procedure and Measurement Equipment;33
6.3.2;2.2 Methods of Data Pre-processing and Processing;34
6.3.3;2.3 Time Domain Analysis Methods;35
6.3.4;2.4 Frequency Domain Analysis Methods;35
6.3.5;2.5 Analysis of Relationship Between Measured Variables;35
6.3.6;2.6 Nonlinear Methods;37
6.4;3 Application and Results;38
6.5;4 Discussion and Conclusion;38
6.6;Acknowledgements;38
6.7;References;39
7;Comparison of Deformation and Stress States of the Total Trapeziometacarpal Replacement;40
7.1;Abstract;40
7.2;1 Introduction;40
7.3;2 Computational Model;41
7.3.1;2.1 Model of Geometry;41
7.3.2;2.2 Model of Material;41
7.3.3;2.3 Boundary Conditions and Contacts;42
7.4;3 Results;43
7.5;4 Conclusion;45
7.6;References;45
8;Analysis of Single-Phase Voltage-Source Active Rectifier Under PWM;47
8.1;Abstract;47
8.2;1 Introduction;47
8.3;2 Single-Phase Voltage-Source Active Rectifier;48
8.3.1;2.1 Simulation Model;48
8.3.2;2.2 PWM Strategy;49
8.4;3 Simulation Results;50
8.5;4 Discussion;54
8.6;Acknowledgement;55
8.7;References;55
9;Minimization of Equivalent Series Resistance of Coupling Coils for Wireless Power Transfer Applications;56
9.1;Abstract;56
9.2;1 Introduction;56
9.3;2 Equivalent Series Resistance Calculation;57
9.4;3 Optimal Cable Design;60
9.5;4 Conclusions;61
9.6;Acknowledgement;62
9.7;References;62
10;Optimal Efficiency and Power Control of High Efficient Wireless Power Transfer System;63
10.1;Abstract;63
10.2;1 Introduction;63
10.3;2 Basic Description of Regulation Technique Description;64
10.4;3 Regulation Principle;65
10.5;4 Simulation Model and Implementation Example;67
10.6;5 Measuring on Prototype;68
10.7;6 Conclusions;69
10.8;Acknowledgement;70
10.9;References;70
11;Design of Consecutive Compensator for Servo System with Signal Uncertainty;71
11.1;Abstract;71
11.2;1 Introduction;71
11.3;2 Formation of a Polynomial Dynamic Model of System Based on Besekersky Approach;72
11.4;3 Main Result. Algorithm of System Synthesis on the Basis of Besekersky Approach;75
11.5;4 Conclusion;76
11.6;Acknowledgements;77
11.7;References;77
12;Multi-criteria Decision-Making Problems in Cutting Tool Wear Evaluation;78
12.1;Abstract;78
12.2;1 Introduction;78
12.3;2 Selected Multi-criteria Decision Aid Methods;79
12.3.1;2.1 Multi-criteria Analysis;79
12.3.2;2.2 Selected Multi-criteria Decision Aid Methods;80
12.4;3 Selected Operating Problems;81
12.4.1;3.1 Shoulder Milling Cutter Wear Analysis;82
12.5;4 Tool Wear Estimation with AHP;82
12.6;5 Summary;83
12.7;References;84
13;The Novel Device for Irreversible Electroporation: Thermographic Comparison with Radiofrequency Ablation;85
13.1;Abstract;85
13.2;1 Introduction;85
13.3;2 Electroporation;85
13.3.1;2.1 Plasma Membrane;86
13.3.2;2.2 Electrical Properties of Cells and Tissues;87
13.3.3;2.3 Reversible Electroporation;88
13.3.4;2.4 Irreversible Electroporation;88
13.4;3 Radiofrequency Ablation;89
13.5;4 Thermographic Comparison of IRE and RFA;90
13.6;5 Results and Discussion;90
13.7;6 Conclusion;92
13.8;Acknowledgements;92
13.9;References;92
14;High-Voltage Pulse Source for Cell Electroporation;93
14.1;Abstract;93
14.2;1 Introduction;93
14.3;2 Initial Analysis of Commercially Available Device;94
14.3.1;2.1 Analysis of Internal Structure of NanoKnife Device;94
14.3.2;2.2 Practical Verification of NanoKnife Output Parameters;95
14.4;3 Design of BUT Electroporating Generator;95
14.4.1;3.1 Definition of Required Output Parameters;95
14.4.2;3.2 Internal Structure of BUT Generator;95
14.4.3;3.3 Design of Pulse Transformer;96
14.4.4;3.4 Construction of Converter Power Stage;97
14.4.5;3.5 Operating Safety Issues;97
14.4.6;3.6 Operating Tests;98
14.5;4 Conclusion;99
14.6;Acknowledgement;99
14.7;References;99
15;Valve for Testing Rocket Engines;100
15.1;Abstract;100
15.2;1 Introduction;100
15.3;2 Structure of the Valve;101
15.4;3 Selection of the Drive;103
15.5;4 Simulation Study;104
15.6;5 Summary and Conclusions;106
15.7;References;107
16;System Approach to the Mass Production Improvement;108
16.1;Abstract;108
16.2;1 Introduction;108
16.3;2 Features of Mass Production and Ways to Increase Its Efficiency;109
16.3.1;2.1 Production Systems and the Theory of Constraints;109
16.3.2;2.2 Lean Manufacturing: Advantages and Problems;110
16.4;3 Results and Discussion: Simulation Models to Manage Mass Production and Human Resources;111
16.4.1;3.1 Optimization of Technological Processes on the Assembly Line;111
16.4.2;3.2 Ergonomics of the Workplace: The Impact on the Efficiency of Processes;112
16.5;4 Conclusions;114
16.6;References;115
17;An Automatic PCI Assignment Framework for Femtocells in LTE Networks;116
17.1;Abstract;116
17.2;1 Introduction;116
17.3;2 Related Works;117
17.4;3 Centralized PCI Assignment Mechanism;118
17.5;4 Conclusions;122
17.6;Acknowledgement;122
17.7;References;122
18;Classical Interpretation of Ultra-Low Intensity Optical Heterodyning as a Pragmatic Approach to Phot ...;124
18.1;Abstract;124
18.2;1 Introduction;124
18.3;2 Experiment;127
18.4;3 Interpretation of the Experimental Results;128
18.5;4 Conclusions;130
18.6;References;131
19;Numerical Integrator System for Drift Compensated Fluxmeter;132
19.1;Abstract;132
19.2;1 Introduction;132
19.3;2 General Idea and Project of Program;133
19.3.1;2.1 Input Signal Analysis;134
19.3.2;2.2 Output Signal Analysis;134
19.4;3 Software Implementation and Simulations;134
19.5;4 Hardware Implementation and Experiments;136
19.6;5 Conclusions;138
19.7;Acknowledgements;138
19.8;References;138
20;Investigation of Magnetic Properties of Amorphous Fe-Based Alloy Magnetized in Rayleigh Region;139
20.1;Abstract;139
20.2;1 Introduction;139
20.3;2 Object of Investigation;140
20.4;3 Measurement System;141
20.5;4 Experimental Results;141
20.6;5 Conclusions;144
20.7;Acknowledgements;144
20.8;References;145
21;Cutting Insert Wear Analysis Using Industry 4.0;146
21.1;Abstract;146
21.2;1 Introduction;146
21.3;2 Technology of Ball Screw Production;147
21.3.1;2.1 Virtual Reality;148
21.4;3 Experimental Setup;149
21.4.1;3.1 Machine and Tool for Manufacturing;149
21.4.2;3.2 Material of Ball Screw;149
21.5;4 Wear Analysis;150
21.6;5 Visualization of Wear in Virtual Reality;151
21.7;6 Conclusion and Discussion;152
21.8;Acknowledgment;152
21.9;References;153
22;Analysis of Machinability of Pure-Cobalt Disc for Magnetron Deposition Using WEDM;154
22.1;Abstract;154
22.2;1 Introduction;154
22.3;2 Experimental Setup and Material;156
22.4;3 Analysis of Machined Surface;156
22.4.1;3.1 Experimental Methods;156
22.4.2;3.2 Analysis of Morphology of Sample Surface;157
22.4.3;3.3 EDX Analysis of Chemical Composition;157
22.4.4;3.4 Topography of Machined Surface;158
22.5;4 Conclusion and Discussion;160
22.6;Acknowledgment;160
22.7;References;160
23;Using Industry 4.0 Technologies for Teaching and Learning in Education Process;162
23.1;Abstract;162
23.2;1 Introduction;162
23.3;2 Concept of Industry 4.0 and IoT;163
23.4;3 Modernization of the Asynchronous Motor Testbed;164
23.5;4 Conclusion;168
23.6;Acknowledgements;168
23.7;References;168
24;Mth Root Mth Power SNR MPSK Estimator;170
24.1;Abstract;170
24.2;1 Introduction;170
24.3;2 Signal Model;171
24.4;3 Mth Root Mth Power Algorithm;172
24.5;4 Hardware Implementation and Results;175
24.6;5 Performance Limitations;175
24.7;6 Conclusion;177
24.8;References;177
25;Electrical Machines;179
26;Increasing the Efficiency of Induction Generator in Small Hydro Power Plant for Varying River Flow Rate;180
26.1;Abstract;180
26.2;1 Introduction;180
26.3;2 Varying River Flow Rate;181
26.4;3 Efficiency of Induction Generator for Various Power;183
26.4.1;3.1 Power Losses in Induction Machine;183
26.4.2;3.2 Efficiency of Induction Generator for Changing Voltage and Power;183
26.4.3;3.3 Experimental Verification of Analytical Efficiency;185
26.5;4 Improvement of Efficiency by Voltage Change;185
26.5.1;4.1 Power Saving in One Year Period;186
26.6;5 Realization of Voltage Changing;186
26.7;6 Conclusion;187
26.8;Acknowledgement;187
26.9;References;187
27;Volume Minimization of Power Pulse Transformer for a Two-Switch Forward Converter;188
27.1;Abstract;188
27.2;1 Introduction;188
27.3;2 Goal of the Transformer Optimization, Definition of Conditions;189
27.4;3 Analytical Solution of the Optimization;191
27.5;4 Results for a Forward Converter with Output Parameters of 60 V/1 KW;193
27.6;5 Conclusions;195
27.7;Acknowledgement;195
27.8;References;195
28;Efficiency Mapping of a Small Permanent Magnet Synchronous Motor;196
28.1;Abstract;196
28.2;1 Introduction;196
28.3;2 Used Methods;198
28.3.1;2.1 Problem Formulation;198
28.3.2;2.2 Used Material;199
28.4;3 Theoretical Calculations;200
28.5;4 Results;201
28.5.1;4.1 Results Discussion;203
28.6;5 Conclusions;203
28.7;Acknowledgement;203
28.8;References;203
29;Dynamic Model of Wye Connected Induction Machine;205
29.1;1 Introduction;205
29.2;2 Dynamic Model of Induction Motor;206
29.2.1;2.1 Standard Dynamic Model;206
29.2.2;2.2 Dynamic Model with Line-to-Line Voltages;208
29.2.3;2.3 Space Vector Transformation and Dynamic Model;209
29.3;3 Conclusions;211
29.4;References;211
30;Induction Machine Models and Equivalent Circuits Based on Hybrid Parameters of Two-Port Network;213
30.1;Abstract;213
30.2;1 Introduction;213
30.3;2 Transformer Equivalent Circuit Based on Two-Port Network Parameters;214
30.4;3 IM Model Based on Two-Port Network Theory;216
30.5;4 Conclusion;220
30.6;Acknowledgements;220
30.7;References;220
31;Push–Pull Converter Transformer Maximum Efficiency Optimization;222
31.1;Abstract;222
31.2;1 Introduction;222
31.3;2 Definition of Parameters;224
31.3.1;2.1 Input Parameters;224
31.3.2;2.2 Output Parameters;224
31.4;3 Simplifications;224
31.5;4 Optimization Procedure;225
31.5.1;4.1 Winding Losses;225
31.5.2;4.2 Core Losses;226
31.5.3;4.3 Finding the Minimum Losses Point;226
31.6;5 Transformer Design Procedure;227
31.7;6 Design Example;228
31.8;7 Conclusion;228
31.9;Acknowledgement;229
31.10;References;229
32;Synchronous Machine Model Including Damper;230
32.1;Abstract;230
32.2;1 Introduction;230
32.3;2 The Types of Damper;230
32.4;3 Short Circuit Types;231
32.5;4 Mathematical Model;232
32.6;5 Examples of the Time Dependencies During the LN Type of Short-Circuit, Longitudinal Damper;234
32.7;6 Verification Measurement;235
32.8;7 Results Comparison for Various Damper Types;236
32.9;8 Conclusion;237
32.10;Acknowledgements;237
32.11;References;237
33;Reduction of Pulsating Torque of the Synchronous Motor Using Magnetic Wedges;238
33.1;Abstract;238
33.2;1 Introduction;238
33.3;2 Analyzed Machine Description;239
33.4;3 Finite Element Analyses;240
33.4.1;3.1 Model Case A1;241
33.4.2;3.2 Model Case B1;242
33.4.3;3.3 Model Case A2;243
33.4.4;3.4 Model Case B2;244
33.5;4 Conclusion;245
33.6;Acknowledgements;245
33.7;References;245
34;Calculation of a Lap Winding Coil Geometry;247
34.1;Abstract;247
34.2;1 Introduction;247
34.3;2 General Description of Winding Coil Geometry;248
34.4;3 Mathematical Description of the Coil Shape;249
34.4.1;3.1 Segment 1 – The Linear Outcome from the Slot;249
34.4.2;3.2 Segment 2 – The Coil Curvature;250
34.4.3;3.3 Segment 3 – the Coil Involute;251
34.4.4;3.4 Segment 4 – the Coil Curvature;252
34.4.5;3.5 Segment 5 – the Coil Loop;253
34.4.6;3.6 Segment 6 – the Coil Curvature;254
34.4.7;3.7 Segment 7 – the Coil Involute;254
34.4.8;3.8 Segment 8 – the Coil Curvature;255
34.4.9;3.9 Segments 9 and 10 – Linear Return to the Slot and Slot Part;255
34.4.10;3.10 Comparison with Manufactured Coils;256
34.5;4 Conclusion;258
34.6;Acknowledgement;258
34.7;References;258
35;Equivalent Magnetic Circuit Method Usage in the Synchronous Reluctance Machine Rotor Design;259
35.1;Abstract;259
35.2;1 Introduction;259
35.3;2 Synchronous Reluctance Machine Structure;260
35.3.1;2.1 Synchronous Reluctance Machines Rotors;260
35.4;3 Inner Flux Barriers Rotor Calculation;261
35.4.1;3.1 Analytical Calculations;262
35.4.2;3.2 Simple Equivalent Magnetic Circuit Calculation;262
35.4.3;3.3 Rotor Ribs Addition;265
35.5;4 Conclusion;266
35.6;Acknowledgement;266
35.7;References;266
36;Analysis of Rotor Ventilation System of Air Cooled Synchronous Machine Through Computational Fluid D ...;268
36.1;Abstract;268
36.2;1 Introduction;268
36.2.1;1.1 Turbo Generator Cooling System;268
36.2.2;1.2 Branch Effect;269
36.3;2 Analysis;270
36.4;3 Results;271
36.5;4 Conclusion;274
36.6;Acknowledgment;275
36.7;References;275
37;High-Speed Electrical Machines: Review of Concepts and Currently Used Solutions with Synchronous Mac ...;276
37.1;Abstract;276
37.2;1 Introduction;276
37.3;2 High-Speed Machines with PM;276
37.3.1;2.1 High-Speed Machines with PM – Traction Application;276
37.3.2;2.2 High-Speed Machines with PM – Other Application;280
37.3.3;2.3 Other Types of High-Speed Traction Machines;281
37.4;3 Conclusion;282
37.5;Acknowledgement;283
37.6;References;283
38;Control and Design of a High Power Density PMSM;284
38.1;Abstract;284
38.2;1 Introduction;284
38.3;2 Modeling of PMSM;285
38.4;3 Design of PMSM;287
38.5;4 Simulation Results;288
38.6;5 Conclusion;290
38.7;References;291
39;Magnetic Measurements of Solid Material;292
39.1;Abstract;292
39.2;1 Introduction;292
39.3;2 Experimental;293
39.4;3 Results;295
39.5;4 Conclusion;298
39.6;Acknowledgement;299
39.7;References;299
40;Identification of Induction Machine Electromagnetic Parameters for a Wide Range of Frequency and Flux Density;300
40.1;1 Introduction;300
40.2;2 Measuring Method Description;301
40.2.1;2.1 Induction Machine Equivalent Circuit;301
40.2.2;2.2 Derivation of the Equations;302
40.3;3 Measurement Results;303
40.3.1;3.1 Core Losses and Core Loss Resistance Identification;303
40.3.2;3.2 Magnetizing Inductance Identification;305
40.4;4 Conclusions;305
40.5;References;306
41;Modification of Frame for Synchronous Machine with Permanent Magnet;307
41.1;Abstract;307
41.2;1 Introduction;307
41.3;2 Vibration Measurement and Evaluation;307
41.4;3 Modal Analysis;310
41.5;4 Frame Modification;311
41.6;5 Conclusion;312
41.7;Acknowledgement;312
41.8;References;312
42;Mechatronic System with a Turbo-Generator of Two Different Frequencies;313
42.1;Abstract;313
42.2;1 Introduction;313
42.3;2 Block Diagram of Turbogenerator;314
42.4;3 Time Diagram of Control Signals of Sinusoidal PWM;316
42.5;4 Calculation of Power of MFC and Harmonic Components;318
42.6;5 Conclusion;320
42.7;References;320
43;Test Rig for Determination of Performance Characteristics of High Speed Linear Actuators;322
43.1;Abstract;322
43.2;1 Introduction;322
43.2.1;1.1 Characteristic Performance Parameters of the TTM Systems;324
43.3;2 Structure of the Test Rig;324
43.3.1;2.1 Performance Requirements for the Rig;324
43.3.2;2.2 Conception of the Rig;325
43.3.3;2.3 Realization of the Rig;325
43.4;3 Sample Tests of an Actuator;327
43.5;4 Summary;328
43.6;Acknowledgements;329
43.7;References;329
44;Modelling and Simulation;330
45;Dynamic Analysis of Multispindle Lathe;331
45.1;Abstract;331
45.2;1 Introduction;331
45.3;2 Model of Mechanical System with Flexible Parts;332
45.4;3 Model of Motor with Field-Oriented Vector Control;334
45.5;4 Simulation Results;335
45.5.1;4.1 Dynamic Analysis of Flexible Mechanism;335
45.5.2;4.2 Control Parameters Setting and Response;336
45.6;5 Conclusion;338
45.7;Acknowledgement;338
45.8;References;338
46;Numerical and Experimental Solution of Friction Stir Welding of Plates;340
46.1;Abstract;340
46.2;1 Introduction;340
46.3;2 Numerical Solution by Program SYSWELD;341
46.3.1;2.1 Thermo-Fluid Analysis;341
46.3.2;2.2 Thermo – Mechanical Analysis;343
46.4;3 Measurement of Temperature During FSW;344
46.5;4 Discussion;345
46.6;5 Conclusion;346
46.7;Acknowledgments;346
46.8;References;347
47;Universal HIL Test Platform for Mechatronic Systems;348
47.1;Abstract;348
47.2;1 Introduction;348
47.3;2 HIL Simulation Workplace Design;349
47.4;3 Case Study – HIL Simulation of a DC Drive Control;351
47.5;4 Conclusions;354
47.6;Acknowledgment;355
47.7;Appendix;355
47.8;References;355
48;A Dynamic Feedback Neural Model for Identification of the Robot Manipulator;357
48.1;Abstract;357
48.2;1 Introduction;357
48.3;2 Kinematics Modeling of the Robot Manipulator;358
48.3.1;2.1 Analysis of the Forward Kinematics;358
48.3.2;2.2 Analysis of the Inverse Kinematics;360
48.3.3;2.3 Graphical User Interface of the Robot Manipulator;361
48.4;3 Neural Network Model Based NARX Network Structure;361
48.5;4 Experimental Results;362
48.6;5 Conclusion;364
48.7;References;364
49;Innovative Model of Radial Fluid Bearing for Simulations of Turbocharger Rotordynamics;366
49.1;Abstract;366
49.2;1 Introduction;366
49.3;2 Review of the State of the Art;366
49.4;3 Objectives for Computational Modelling;367
49.5;4 Computational Approach;367
49.5.1;4.1 Innovative Approach Introduction;367
49.5.2;4.2 Numerical Solution of Reynolds Equations;370
49.5.3;4.3 Averaging of Results;372
49.6;5 Model Verification on Full Floating Bearing of Turbocharger Rotor;372
49.7;6 Conclusions;373
49.8;Acknowledgement;373
49.9;References;373
50;The Model of Non-stationary Heat Conduction in a Metal Mould;374
50.1;Abstract;374
50.2;1 Introduction;374
50.3;2 The Mathematical Model of Heat Conduction;375
50.3.1;2.1 Model A - Without Own Heat Radiation of the Mould;376
50.3.2;2.2 Model B - With Own Heat Radiation of the Mould;376
50.4;3 The Influence of Boundary Conditions on the Temperature Field;377
50.4.1;3.1 The Comparison of the Temperature Fields for Different Boundary Conditions;377
50.4.2;3.2 The Calculated Temperature Field and Experimental Measurement;379
50.5;4 Conclusion;380
50.6;Acknowledgement;380
50.7;References;381
51;The Possibility of Applying Neural Networks to Influence Vehicle Energy Consumption by Eco Driving;382
51.1;Abstract;382
51.2;1 Introduction;382
51.2.1;1.1 Problems Defined in Eco-Driving;382
51.3;2 Defining Driving Test of Heavy Duty Vehicle;383
51.3.1;2.1 Path Selection for Driving Test;384
51.4;3 Data Collection from Vehicle;384
51.5;4 The Application of Neural Networks in Vehicle Model Design;386
51.6;5 Conclusion;388
51.7;Acknowledgement;389
51.8;References;389
52;Parametric Model of Human Body for Orthotic Robot Simulation Study;390
52.1;Abstract;390
52.2;1 Introduction – Orthotic Robots and the ‘Veni-Prometheus’ System;390
52.3;2 Purpose of the Model;391
52.4;3 Model Description;392
52.5;4 Discussion;394
52.6;5 Conclusions;396
52.7;References;396
53;Evaluation of Gait and Standing Posture by Software Based on SimMechanics;397
53.1;Abstract;397
53.2;1 Introduction;397
53.3;2 Methods;398
53.3.1;2.1 Measurement Procedure and Model of the Body;398
53.3.2;2.2 Data Analysis;399
53.4;3 Application and Results;401
53.5;4 Discussion;402
53.6;5 Conclusions;403
53.7;Acknowledgements;403
53.8;References;404
54;FEM – Based Simulations of Selected Setups of Magnetic Field Tomography;405
54.1;Abstract;405
54.2;1 Introduction;405
54.3;2 Tested Setups for Magnetic Field Tomography;406
54.3.1;2.1 Four Permanent Magnets Setup;406
54.3.2;2.2 Six Permanent Magnets Setup;406
54.3.3;2.3 Eight Permanent Magnets Setup;407
54.3.4;2.4 Two Permanent Magnets Setup with Additional Objects’ Linear Movement;407
54.4;3 FEM – Modelling and Exemplary Results;408
54.5;4 Result Analysis;409
54.6;5 Conclusions;410
54.7;Acknowledgements;411
54.8;References;411
55;Modelling and Simulation of Vehicle Boot Door;412
55.1;Abstract;412
55.2;1 Introduction;412
55.3;2 System Analysis and Description;412
55.4;3 Dynamic Model of a Boot Door Mechanism;414
55.5;4 Simulation Results and Verification Using Measured Data;416
55.5.1;4.1 Simulations with Real Data;417
55.6;5 Conclusion;418
55.7;References;419
56;Advanced Multi-body Modelling in Mechatronics Education;420
56.1;Abstract;420
56.2;1 Introduction;420
56.3;2 Model;421
56.3.1;2.1 Kinematics;421
56.3.2;2.2 Dynamics;423
56.3.3;2.3 State-Space Model Based on MBS Model with Flexible Bodies;425
56.4;3 Conclusions;426
56.5;Acknowledgement;426
56.6;References;426
57;Control;427
58;Unusual Application of the X3STEP Controller;428
58.1;Abstract;428
58.2;1 Introduction;428
58.3;2 Problem Statement;429
58.4;3 X3STEP Controller;430
58.5;4 Hardware Interface;432
58.6;5 Software Interface;432
58.7;6 Simulations Research;434
58.8;7 Summary;435
58.9;References;436
59;Disturbance Compensation and Control Algorithm with Application for Non-linear Twin Rotor MIMO System;437
59.1;Abstract;437
59.2;1 Introduction;437
59.3;2 Problem Statement;438
59.4;3 Compensation of Disturbances;439
59.5;4 Example;441
59.6;5 Conclusions;443
59.7;Acknowledgement;443
59.8;References;443
60;Model Reference Control for a Class of MIMO System with Dead-Time;445
60.1;Abstract;445
60.2;1 Introduction;445
60.3;2 Problem Formulation;445
60.4;3 Controller Design;447
60.5;4 Concluding Remarks;452
60.6;References;452
61;Robust Control of Uncertain MIMO Plants in Conditions of Output Quantization and Time-Delay;453
61.1;Abstract;453
61.2;1 Introduction;453
61.3;2 Problem Statement;454
61.4;3 Control Law;455
61.5;4 Example;458
61.6;5 Conclusion;459
61.7;Acknowledgement;459
61.8;References;460
62;Speed Estimator for Low Speed PMSM Aerospace Application;461
62.1;Abstract;461
62.2;1 Introduction;461
62.3;2 Speed Control Loop Design and Simulation of Vector Controlled PMSM;462
62.4;3 Conclusion;465
62.5;Acknowledgements;465
62.6;References;466
63;The New Stepper Driver for Low-Cost Arduino Based 3D Printer with Dynamic Stepper Control;467
63.1;Abstract;467
63.2;1 Introduction;467
63.3;2 Torque Design of X and Y Axis Gears;468
63.4;3 General Approach to Stepper Drivers Used in Low-Cost 3D Printers;469
63.5;4 The New Stepper Driver Design;470
63.6;5 Dynamic Stepper Control;472
63.7;6 Comparison of the Results;473
63.8;7 Conclusion;474
63.9;Acknowledgements;474
63.10;References;474
64;Model Based Fault-Tolerant Control for SMA Actuator in Soft Robotics;476
64.1;Abstract;476
64.2;1 Introduction;476
64.3;2 Modelling of SMA-Actuator;477
64.3.1;2.1 Model of Single SMA-Actuator;477
64.3.2;2.2 Experiment Setup and Parameters of Modell;478
64.4;3 Parallel Control for Reality and Model of SMA Actuator;479
64.5;4 Fault-Tolerant Control for Single SMA Actuator;481
64.6;5 Conclusion and Outlook;483
64.7;References;483
65;Design and Verification of FPGA-Based Real-Time HIL Simulator of Induction Motor Drive;484
65.1;1 Introduction;484
65.2;2 HIL Platform Hardware Description;485
65.3;3 HIL Simulator Setup;486
65.3.1;3.1 HIL Model;488
65.4;4 Experimental Results;489
65.5;5 Conclusion;491
65.6;References;491
66;Robust Control of a Robot Arm Using an Optimized PID Controller;493
66.1;Abstract;493
66.2;1 Introduction;493
66.3;2 Dynamic Model of Scorbot ER-V Plus;494
66.4;3 Controller Design of Joint Motors;495
66.5;4 Simulation Results;498
66.6;5 Conclusion;500
66.7;References;500
67;PSO Optimized ADRC Motor Speed Controller for Two Mass System with Backlash;502
67.1;Abstract;502
67.2;1 Introduction;502
67.3;2 Plant Model;503
67.4;3 Control System Structure;504
67.4.1;3.1 2DOF – PI Controller;504
67.4.2;3.2 ADRC Controller;505
67.5;4 Optimization Algorithm;506
67.6;5 Simulation Results;506
67.7;6 Conclusions;509
67.8;References;509
68;Sensors and Measurement;510
69;Separation of Gravitational Acceleration from Acceleration of Human Motion Using Quaternion Based Un ...;511
69.1;Abstract;511
69.2;1 Introduction;511
69.3;2 Method;512
69.3.1;2.1 Instrumentation;512
69.3.2;2.2 Data Processing;513
69.3.3;2.3 Filter Tuning;516
69.4;3 Results;516
69.5;4 Conclusion;517
69.6;Acknowledgements;518
69.7;References;518
70;Methods of Motion Data Analysis of Animal’s Body on Rotating Platform;519
70.1;Abstract;519
70.2;1 Introduction;519
70.3;2 Evaluation Methods;520
70.3.1;2.1 Methods of Evaluation of Time Domain Data;522
70.3.2;2.2 Methods of Evaluation of Relationship Between Measured Variables;524
70.4;3 Experiments and Results;525
70.5;4 Discussion and Conclusion;526
70.6;Acknowledgements;526
70.7;References;526
71;Fabrication and Optical-Electrical Characterization of Al/p-Si/CdO/Au Photodiode;528
71.1;Abstract;528
71.2;1 Introduction;528
71.3;2 Experimental Details;529
71.4;3 Results and Discussions;529
71.5;4 Conclusion;535
71.6;References;535
72;Threshold Selection Based on Extreme Value Theory;537
72.1;1 Introduction;537
72.2;2 Extreme Value Estimation;539
72.3;3 Extreme Value Theory;541
72.4;4 Real Dataset Experiments;543
72.5;5 Conclusions;544
72.6;References;544
73;Development of a Time of Flight Laser Scanner 3D;546
73.1;Abstract;546
73.2;1 Introduction;546
73.3;2 Design of the Laser Scanner;547
73.3.1;2.1 Objectives;547
73.3.2;2.2 Fields of Application;547
73.3.3;2.3 The Proposed Solution [10];548
73.4;3 Control;549
73.4.1;3.1 Data Communication via the CAN Interface;550
73.4.2;3.2 Data Interpretation [11–13];550
73.5;4 Results and Conclusion;551
73.6;References;552
74;Polish Road Signs Detection and Classification System Based on Sign Sketches and ConvNet;554
74.1;Abstract;554
74.2;1 Introduction;554
74.3;2 Related Work;555
74.4;3 Generation of Synthetic Sign Views;556
74.5;4 Deep Convolutional Neural Network;558
74.6;5 Experimental Results;559
74.7;6 Conclusions;560
74.8;Acknowledgement;560
74.9;References;561
75;The Influence of the Learning Set on the Evaluation of Microcalcifications Using Artificial Neural N ...;562
75.1;Abstract;562
75.2;1 Introduction;562
75.3;2 Research Methodology and Results;564
75.4;3 Conclusion;567
75.5;References;568
76;Experimental Measurement of Magnetic Field Generated by Neodymium Magnet;570
76.1;Abstract;570
76.2;1 Introduction;570
76.3;2 Measuring Station;571
76.4;3 Measurements Results;574
76.5;4 Conclusions;577
76.6;References;577
77;Measurement of Power Transistors Dynamic Parameters;579
77.1;Abstract;579
77.2;1 Introduction;579
77.3;2 Measuring Laboratory Workplace;580
77.4;3 Conclusions;585
77.5;Acknowledgements;585
77.6;References;585
78;Measurement of High-Frequency Currents in Power Electronics;586
78.1;1 Introduction;586
78.2;2 Possibilities of Collector Current Measurement;587
78.3;3 Current Transformer Analysis;588
78.3.1;3.1 Current Transformer Numeric Calculation;588
78.3.2;3.2 Experimental Verification of Model Results;589
78.3.3;3.3 Measured Values Explanation;590
78.4;4 Practical Realization of the Current Transformer;591
78.5;5 Conclusions;592
78.6;References;593
79;Counting Pedestrians in Inner Spaces Using Optical Flow Algorithm;594
79.1;Abstract;594
79.2;1 Introduction;594
79.3;2 Reviewed Approaches;595
79.4;3 Used Approach;595
79.5;4 Achievements;596
79.6;5 Conclusion;599
79.7;References;599
80;Comparison of Vibration and Noise Measurement of Induction Machine Under Static Eccentricity;600
80.1;Abstract;600
80.2;1 Introduction;600
80.3;2 Measurement Description;601
80.4;3 Data Evaluation;603
80.5;4 Conclusions;606
80.6;Acknowledgements;606
80.7;References;606
81;A Distributed Measurement System for Helium Spill Monitoring;607
81.1;Abstract;607
81.2;1 Introduction;607
81.3;2 Measurement System for Helium Spill Monitoring;608
81.4;3 Ultrasonic Helium Detector;610
81.5;4 Acoustic Helium Detection – Principle of Operation;611
81.6;5 Numerical Simulations and Comparison with Initial Test Results;612
81.7;6 Final Remarks;613
81.8;References;613
82;Influence of Measurement Parameters Settings on the Results of the CT Measurement;615
82.1;Abstract;615
82.2;1 Introduction;615
82.3;2 Study Procedure;616
82.4;3 Results;618
82.5;4 Conclusions;619
82.6;Acknowledgements;620
82.7;References;620
83;Measurement System for Magnetic Field Sensors Testing with Earth’s Magnetic Field Compensation;621
83.1;Abstract;621
83.2;1 Introduction;621
83.3;2 System Setup;622
83.3.1;2.1 The Main Field Generating Coils;622
83.3.2;2.2 Connection Schematic;622
83.3.3;2.3 LabView Software;623
83.4;3 Measurement Results;624
83.5;4 Conclusion;626
83.6;References;626
84;DeepEMGNet: An Application for Efficient Discrimination of ALS and Normal EMG Signals;627
84.1;Abstract;627
84.2;1 Introduction;627
84.3;2 Proposed Method;629
84.3.1;2.1 Short Time Fourier Transform (STFT);629
84.3.2;2.2 Convolutional Neural Networks (CNN);629
84.4;3 Dataset and Experiments;630
84.4.1;3.1 Dataset;630
84.4.2;3.2 Experimental Setup and Results;630
84.5;4 Conclusions;632
84.6;References;632
85;Comparison of Interpolation Methods for Atmospheric Pressure Determination with Help of TDOA System;634
85.1;Abstract;634
85.2;1 Introduction;634
85.3;2 UFE Data Format (ASTERIX);635
85.4;3 Extraction of Data;635
85.5;4 Data Interpolation;636
85.5.1;4.1 Interpolation Area Selection;637
85.5.2;4.2 Data Interpolation - 16.12.2010;637
85.6;5 Conclusions;641
85.7;Reference;641
86;Robotics;642
87;Determination of Optimal Local Path for Mobile Robot;643
87.1;Abstract;643
87.2;1 Introduction;643
87.3;2 Path Optimization;644
87.3.1;2.1 Path, Robot and World Representation;644
87.3.2;2.2 Fitness Function;644
87.3.3;2.3 Optimization;645
87.3.4;2.4 Refinement;646
87.4;3 Results;647
87.5;4 Conclusions;649
87.6;Acknowledgement;649
87.7;References;649
88;Development of Dual Wiimote-Based 3D Localization Schemes for Mobile Robot and Quadcopter Integration;650
88.1;Abstract;650
88.2;1 Introduction;650
88.3;2 Wiimote 3D Localization System;652
88.4;3 Realization of Wiimote 3D Localization;652
88.5;4 Dual Wiimote 3D Localization;654
88.6;5 Demonstrations;656
88.7;6 Discussion, Conclusion, and Future Work;657
88.8;Acknowledgement;657
88.9;References;657
89;Battery-Powered Autonomous Robot for Cleaning of Dusty Photovoltaic Panels in Desert Zones;659
89.1;Abstract;659
89.2;1 Introduction;659
89.3;2 The Mechanical Design;661
89.3.1;2.1 Technical Specifications;661
89.3.2;2.2 The Cleaning Strategy;662
89.3.3;2.3 The Functional Design;663
89.3.4;2.4 The Prototype;664
89.4;3 The Electronic Control System Design;664
89.5;4 Experimental Verification of the Robot;666
89.6;References;666
90;Design and Control of Diving Mechanism for the Biomimetic Robotic Fish;668
90.1;Abstract;668
90.2;1 Introduction;668
90.3;2 Mathematical Modelling of the Gravity Center;669
90.4;3 Diving Mechanism for the Depth Control;670
90.5;4 Results;672
90.6;5 Conclusion;675
90.7;Acknowledgement;676
90.8;References;676
91;Standards to Support Military Autonomous System Life Cycle;677
91.1;Abstract;677
91.2;1 Introduction;677
91.3;2 AS Life Cycle in Military Domain;678
91.4;3 Gap Analysis of Standards and Best Practices for AS Life Cycle;680
91.5;4 Composition of MSDL and CBML into AS Life Cycle;682
91.6;5 Conclusion;684
91.7;References;684
92;Robotic Assistant for the Elderly - Rehabilitation Walker;685
92.1;Abstract;685
92.2;1 Introduction;685
92.3;2 General Working Principles;686
92.3.1;2.1 Design of a Robotic Walker;686
92.3.2;2.2 Criteria and Calculations for Stability;688
92.3.3;2.3 Operating Principle of the Robotic Assistant;690
92.4;3 Conclusion;691
92.5;References;692
93;Motion Control of Three-Rotor Unmanned Underwater Vehicle;693
93.1;Abstract;693
93.2;1 Introduction;693
93.3;2 Description of the UUV;694
93.4;3 Motion Equations of the Three-Rotor UUV;695
93.4.1;3.1 UUV Reference Frames;695
93.4.2;3.2 UUV Modeling;696
93.5;4 Guidance and Trajectory Tracking;698
93.6;5 Conclusion;700
93.7;References;700
94;Smart Systems;702
95;From Simulation to Manufacturing of Piezoelectric Micromachined AlN Membrane;703
95.1;Abstract;703
95.2;1 Introduction;703
95.3;2 Piezoelectric Layer Properties;704
95.4;3 Experimental;704
95.4.1;3.1 Simulation Results;704
95.4.2;3.2 Mechanical Tests of AlN Piezo Layer;706
95.4.3;3.3 Development of AlN Layer Technology;707
95.4.4;3.4 Electrical Measurements of the Manufactured AlN Layer;709
95.5;4 Summary;710
95.6;Acknowledgement;710
95.7;References;710
96;Probabilistic Reasoning in Diagnostic Expert System for Smart Homes;712
96.1;Abstract;712
96.2;1 Introduction;712
96.3;2 General Expert System Architecture;712
96.3.1;2.1 Inference Mechanism;713
96.3.2;2.2 Inference Mechanism in Numbers;715
96.4;3 Simulation Experiment with Three Evidences;717
96.5;4 Conclusion;719
96.6;Acknowledgement;719
96.7;References;719
97;Development of Smart and Dynamic Floral Clothing Accessories;720
97.1;Abstract;720
97.2;1 Introduction;720
97.3;2 Concept Design of the Floral Clothing Accessory;722
97.4;3 Actuating Elements by Shape Memory Alloy (SMA);723
97.4.1;3.1 Measurement of the Performances of the SMA Wire;724
97.4.2;3.2 Actuating Element by Helical Spring-Shaped SMA;724
97.5;4 Design and Fabrication of SMA Actuating Mechanisms;725
97.6;5 Electronic Control System;726
97.6.1;5.1 Electronic Components;726
97.6.2;5.2 Drive and Control of the Actuating Mechanism by Using Arduino;727
97.7;6 Conclusion;728
97.8;References;728
98;Numerical Wave Tank Analysis for Energy Harvesting with Oscillating Water Column;730
98.1;Abstract;730
98.2;1 Introduction;730
98.3;2 Materials and Methods;731
98.3.1;2.1 General Working Principles;731
98.3.2;2.2 Numerical Wave Tank and Oscillating Water Column;732
98.3.3;2.3 User Defined Function;734
98.4;3 Results;735
98.4.1;3.1 Validation;735
98.4.2;3.2 Cases;735
98.4.3;3.3 Power Output;736
98.5;4 Conclusions;737
98.6;References;738
99;Coil Optimization for Linear Electromagnetic Energy Harvesters with Non-uniform Magnetic Field;739
99.1;Abstract;739
99.2;1 Introduction;739
99.3;2 Linear Electromagnetic Harvester Model;740
99.4;3 Model of Magnetic Field in the Coil Area;741
99.5;4 Coil Optimization Algorithm;743
99.6;5 Results and Discussion;744
99.7;6 Conclusions;745
99.8;Acknowledgement;746
99.9;References;746
100;Performance Analysis of Wave Energy Harvesting System with Piezoelectric Element;747
100.1;Abstract;747
100.2;1 Introduction;747
100.3;2 Experimental Setup;748
100.4;3 Results and Discussion;750
100.5;4 Conclusion;753
100.6;References;753
101;Author Index;754