Brezina / Brezina / Jablonski | Mechatronics 2017 | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 644, 756 Seiten, eBook

Reihe: Advances in Intelligent Systems and Computing

Brezina / Brezina / Jablonski Mechatronics 2017

Recent Technological and Scientific Advances
1. Auflage 2018
ISBN: 978-3-319-65960-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Recent Technological and Scientific Advances

E-Book, Englisch, Band 644, 756 Seiten, eBook

Reihe: Advances in Intelligent Systems and Computing

ISBN: 978-3-319-65960-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents nearly 90 carefully selected contributions at the 12th International Conference Mechatronics, which took place in Brno, Czech Republic on 6–8 September 2017. Reflecting the most progressive and constantly changing areas of mechatronics, these proceedings includes papers concerning modeling and simulation, automatic control, robotics, sensors and actuators, electrical machines, and energy harvesting. It not only offers inspiration, but also deepens readers’ interdisciplinary and integrated understanding of modern engineering. The book is intended for experts in the integration of electronic, mechanical, control and computer sciences.
Brezina / Brezina / Jablonski Mechatronics 2017 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Mechatronics 2017 – Preface;6
2;Contents;7
3;Mechatronics;15
4;A Compact Device for Urine Collection and Transport in Porous Media;16
4.1;Abstract;16
4.2;1 Introduction;16
4.3;2 Materials and Methods;17
4.3.1;2.1 Equations;17
4.3.2;2.2 Methods;18
4.3.3;2.3 Experimenal Setup;20
4.4;3 Results and Discussion;20
4.4.1;3.1 Covered and Uncovered Capillary Flow;20
4.4.2;3.2 Vertical Capillary Flow in Folded Filter Paper;21
4.4.3;3.3 Horizontal Capillary Flow;22
4.5;4 Conclusion;22
4.6;5 Future Work;23
4.7;Acknowledgement;23
4.8;References;23
5;Innovation of Pressing with TRIZ Methodology;24
5.1;Abstract;24
5.2;1 Introduction;24
5.3;2 Map of the Problem - RCA Diagram;25
5.4;3 Contradictions and Possible Solutions;26
5.4.1;3.1 Inventive Tasks as Technical and Physical Contradictions - TC1 and PC1;26
5.4.2;3.2 Inventive Tasks as Another Contradictions to Be Solved;28
5.5;4 Implementation of Found Inventions into Innovation;29
5.6;5 Conclusion;31
5.7;Acknowledgements;31
5.8;References;31
6;Evaluation of Postural Stability During Quiet Standing Using MatLab Software and Promising Parameters;32
6.1;Abstract;32
6.2;1 Introduction;32
6.3;2 Methods;33
6.3.1;2.1 Measurement Procedure and Measurement Equipment;33
6.3.2;2.2 Methods of Data Pre-processing and Processing;34
6.3.3;2.3 Time Domain Analysis Methods;35
6.3.4;2.4 Frequency Domain Analysis Methods;35
6.3.5;2.5 Analysis of Relationship Between Measured Variables;35
6.3.6;2.6 Nonlinear Methods;37
6.4;3 Application and Results;38
6.5;4 Discussion and Conclusion;38
6.6;Acknowledgements;38
6.7;References;39
7;Comparison of Deformation and Stress States of the Total Trapeziometacarpal Replacement;40
7.1;Abstract;40
7.2;1 Introduction;40
7.3;2 Computational Model;41
7.3.1;2.1 Model of Geometry;41
7.3.2;2.2 Model of Material;41
7.3.3;2.3 Boundary Conditions and Contacts;42
7.4;3 Results;43
7.5;4 Conclusion;45
7.6;References;45
8;Analysis of Single-Phase Voltage-Source Active Rectifier Under PWM;47
8.1;Abstract;47
8.2;1 Introduction;47
8.3;2 Single-Phase Voltage-Source Active Rectifier;48
8.3.1;2.1 Simulation Model;48
8.3.2;2.2 PWM Strategy;49
8.4;3 Simulation Results;50
8.5;4 Discussion;54
8.6;Acknowledgement;55
8.7;References;55
9;Minimization of Equivalent Series Resistance of Coupling Coils for Wireless Power Transfer Applications;56
9.1;Abstract;56
9.2;1 Introduction;56
9.3;2 Equivalent Series Resistance Calculation;57
9.4;3 Optimal Cable Design;60
9.5;4 Conclusions;61
9.6;Acknowledgement;62
9.7;References;62
10;Optimal Efficiency and Power Control of High Efficient Wireless Power Transfer System;63
10.1;Abstract;63
10.2;1 Introduction;63
10.3;2 Basic Description of Regulation Technique Description;64
10.4;3 Regulation Principle;65
10.5;4 Simulation Model and Implementation Example;67
10.6;5 Measuring on Prototype;68
10.7;6 Conclusions;69
10.8;Acknowledgement;70
10.9;References;70
11;Design of Consecutive Compensator for Servo System with Signal Uncertainty;71
11.1;Abstract;71
11.2;1 Introduction;71
11.3;2 Formation of a Polynomial Dynamic Model of System Based on Besekersky Approach;72
11.4;3 Main Result. Algorithm of System Synthesis on the Basis of Besekersky Approach;75
11.5;4 Conclusion;76
11.6;Acknowledgements;77
11.7;References;77
12;Multi-criteria Decision-Making Problems in Cutting Tool Wear Evaluation;78
12.1;Abstract;78
12.2;1 Introduction;78
12.3;2 Selected Multi-criteria Decision Aid Methods;79
12.3.1;2.1 Multi-criteria Analysis;79
12.3.2;2.2 Selected Multi-criteria Decision Aid Methods;80
12.4;3 Selected Operating Problems;81
12.4.1;3.1 Shoulder Milling Cutter Wear Analysis;82
12.5;4 Tool Wear Estimation with AHP;82
12.6;5 Summary;83
12.7;References;84
13;The Novel Device for Irreversible Electroporation: Thermographic Comparison with Radiofrequency Ablation;85
13.1;Abstract;85
13.2;1 Introduction;85
13.3;2 Electroporation;85
13.3.1;2.1 Plasma Membrane;86
13.3.2;2.2 Electrical Properties of Cells and Tissues;87
13.3.3;2.3 Reversible Electroporation;88
13.3.4;2.4 Irreversible Electroporation;88
13.4;3 Radiofrequency Ablation;89
13.5;4 Thermographic Comparison of IRE and RFA;90
13.6;5 Results and Discussion;90
13.7;6 Conclusion;92
13.8;Acknowledgements;92
13.9;References;92
14;High-Voltage Pulse Source for Cell Electroporation;93
14.1;Abstract;93
14.2;1 Introduction;93
14.3;2 Initial Analysis of Commercially Available Device;94
14.3.1;2.1 Analysis of Internal Structure of NanoKnife Device;94
14.3.2;2.2 Practical Verification of NanoKnife Output Parameters;95
14.4;3 Design of BUT Electroporating Generator;95
14.4.1;3.1 Definition of Required Output Parameters;95
14.4.2;3.2 Internal Structure of BUT Generator;95
14.4.3;3.3 Design of Pulse Transformer;96
14.4.4;3.4 Construction of Converter Power Stage;97
14.4.5;3.5 Operating Safety Issues;97
14.4.6;3.6 Operating Tests;98
14.5;4 Conclusion;99
14.6;Acknowledgement;99
14.7;References;99
15;Valve for Testing Rocket Engines;100
15.1;Abstract;100
15.2;1 Introduction;100
15.3;2 Structure of the Valve;101
15.4;3 Selection of the Drive;103
15.5;4 Simulation Study;104
15.6;5 Summary and Conclusions;106
15.7;References;107
16;System Approach to the Mass Production Improvement;108
16.1;Abstract;108
16.2;1 Introduction;108
16.3;2 Features of Mass Production and Ways to Increase Its Efficiency;109
16.3.1;2.1 Production Systems and the Theory of Constraints;109
16.3.2;2.2 Lean Manufacturing: Advantages and Problems;110
16.4;3 Results and Discussion: Simulation Models to Manage Mass Production and Human Resources;111
16.4.1;3.1 Optimization of Technological Processes on the Assembly Line;111
16.4.2;3.2 Ergonomics of the Workplace: The Impact on the Efficiency of Processes;112
16.5;4 Conclusions;114
16.6;References;115
17;An Automatic PCI Assignment Framework for Femtocells in LTE Networks;116
17.1;Abstract;116
17.2;1 Introduction;116
17.3;2 Related Works;117
17.4;3 Centralized PCI Assignment Mechanism;118
17.5;4 Conclusions;122
17.6;Acknowledgement;122
17.7;References;122
18;Classical Interpretation of Ultra-Low Intensity Optical Heterodyning as a Pragmatic Approach to Phot ...;124
18.1;Abstract;124
18.2;1 Introduction;124
18.3;2 Experiment;127
18.4;3 Interpretation of the Experimental Results;128
18.5;4 Conclusions;130
18.6;References;131
19;Numerical Integrator System for Drift Compensated Fluxmeter;132
19.1;Abstract;132
19.2;1 Introduction;132
19.3;2 General Idea and Project of Program;133
19.3.1;2.1 Input Signal Analysis;134
19.3.2;2.2 Output Signal Analysis;134
19.4;3 Software Implementation and Simulations;134
19.5;4 Hardware Implementation and Experiments;136
19.6;5 Conclusions;138
19.7;Acknowledgements;138
19.8;References;138
20;Investigation of Magnetic Properties of Amorphous Fe-Based Alloy Magnetized in Rayleigh Region;139
20.1;Abstract;139
20.2;1 Introduction;139
20.3;2 Object of Investigation;140
20.4;3 Measurement System;141
20.5;4 Experimental Results;141
20.6;5 Conclusions;144
20.7;Acknowledgements;144
20.8;References;145
21;Cutting Insert Wear Analysis Using Industry 4.0;146
21.1;Abstract;146
21.2;1 Introduction;146
21.3;2 Technology of Ball Screw Production;147
21.3.1;2.1 Virtual Reality;148
21.4;3 Experimental Setup;149
21.4.1;3.1 Machine and Tool for Manufacturing;149
21.4.2;3.2 Material of Ball Screw;149
21.5;4 Wear Analysis;150
21.6;5 Visualization of Wear in Virtual Reality;151
21.7;6 Conclusion and Discussion;152
21.8;Acknowledgment;152
21.9;References;153
22;Analysis of Machinability of Pure-Cobalt Disc for Magnetron Deposition Using WEDM;154
22.1;Abstract;154
22.2;1 Introduction;154
22.3;2 Experimental Setup and Material;156
22.4;3 Analysis of Machined Surface;156
22.4.1;3.1 Experimental Methods;156
22.4.2;3.2 Analysis of Morphology of Sample Surface;157
22.4.3;3.3 EDX Analysis of Chemical Composition;157
22.4.4;3.4 Topography of Machined Surface;158
22.5;4 Conclusion and Discussion;160
22.6;Acknowledgment;160
22.7;References;160
23;Using Industry 4.0 Technologies for Teaching and Learning in Education Process;162
23.1;Abstract;162
23.2;1 Introduction;162
23.3;2 Concept of Industry 4.0 and IoT;163
23.4;3 Modernization of the Asynchronous Motor Testbed;164
23.5;4 Conclusion;168
23.6;Acknowledgements;168
23.7;References;168
24;Mth Root Mth Power SNR MPSK Estimator;170
24.1;Abstract;170
24.2;1 Introduction;170
24.3;2 Signal Model;171
24.4;3 Mth Root Mth Power Algorithm;172
24.5;4 Hardware Implementation and Results;175
24.6;5 Performance Limitations;175
24.7;6 Conclusion;177
24.8;References;177
25;Electrical Machines;179
26;Increasing the Efficiency of Induction Generator in Small Hydro Power Plant for Varying River Flow Rate;180
26.1;Abstract;180
26.2;1 Introduction;180
26.3;2 Varying River Flow Rate;181
26.4;3 Efficiency of Induction Generator for Various Power;183
26.4.1;3.1 Power Losses in Induction Machine;183
26.4.2;3.2 Efficiency of Induction Generator for Changing Voltage and Power;183
26.4.3;3.3 Experimental Verification of Analytical Efficiency;185
26.5;4 Improvement of Efficiency by Voltage Change;185
26.5.1;4.1 Power Saving in One Year Period;186
26.6;5 Realization of Voltage Changing;186
26.7;6 Conclusion;187
26.8;Acknowledgement;187
26.9;References;187
27;Volume Minimization of Power Pulse Transformer for a Two-Switch Forward Converter;188
27.1;Abstract;188
27.2;1 Introduction;188
27.3;2 Goal of the Transformer Optimization, Definition of Conditions;189
27.4;3 Analytical Solution of the Optimization;191
27.5;4 Results for a Forward Converter with Output Parameters of 60 V/1 KW;193
27.6;5 Conclusions;195
27.7;Acknowledgement;195
27.8;References;195
28;Efficiency Mapping of a Small Permanent Magnet Synchronous Motor;196
28.1;Abstract;196
28.2;1 Introduction;196
28.3;2 Used Methods;198
28.3.1;2.1 Problem Formulation;198
28.3.2;2.2 Used Material;199
28.4;3 Theoretical Calculations;200
28.5;4 Results;201
28.5.1;4.1 Results Discussion;203
28.6;5 Conclusions;203
28.7;Acknowledgement;203
28.8;References;203
29;Dynamic Model of Wye Connected Induction Machine;205
29.1;1 Introduction;205
29.2;2 Dynamic Model of Induction Motor;206
29.2.1;2.1 Standard Dynamic Model;206
29.2.2;2.2 Dynamic Model with Line-to-Line Voltages;208
29.2.3;2.3 Space Vector Transformation and Dynamic Model;209
29.3;3 Conclusions;211
29.4;References;211
30;Induction Machine Models and Equivalent Circuits Based on Hybrid Parameters of Two-Port Network;213
30.1;Abstract;213
30.2;1 Introduction;213
30.3;2 Transformer Equivalent Circuit Based on Two-Port Network Parameters;214
30.4;3 IM Model Based on Two-Port Network Theory;216
30.5;4 Conclusion;220
30.6;Acknowledgements;220
30.7;References;220
31;Push–Pull Converter Transformer Maximum Efficiency Optimization;222
31.1;Abstract;222
31.2;1 Introduction;222
31.3;2 Definition of Parameters;224
31.3.1;2.1 Input Parameters;224
31.3.2;2.2 Output Parameters;224
31.4;3 Simplifications;224
31.5;4 Optimization Procedure;225
31.5.1;4.1 Winding Losses;225
31.5.2;4.2 Core Losses;226
31.5.3;4.3 Finding the Minimum Losses Point;226
31.6;5 Transformer Design Procedure;227
31.7;6 Design Example;228
31.8;7 Conclusion;228
31.9;Acknowledgement;229
31.10;References;229
32;Synchronous Machine Model Including Damper;230
32.1;Abstract;230
32.2;1 Introduction;230
32.3;2 The Types of Damper;230
32.4;3 Short Circuit Types;231
32.5;4 Mathematical Model;232
32.6;5 Examples of the Time Dependencies During the LN Type of Short-Circuit, Longitudinal Damper;234
32.7;6 Verification Measurement;235
32.8;7 Results Comparison for Various Damper Types;236
32.9;8 Conclusion;237
32.10;Acknowledgements;237
32.11;References;237
33;Reduction of Pulsating Torque of the Synchronous Motor Using Magnetic Wedges;238
33.1;Abstract;238
33.2;1 Introduction;238
33.3;2 Analyzed Machine Description;239
33.4;3 Finite Element Analyses;240
33.4.1;3.1 Model Case A1;241
33.4.2;3.2 Model Case B1;242
33.4.3;3.3 Model Case A2;243
33.4.4;3.4 Model Case B2;244
33.5;4 Conclusion;245
33.6;Acknowledgements;245
33.7;References;245
34;Calculation of a Lap Winding Coil Geometry;247
34.1;Abstract;247
34.2;1 Introduction;247
34.3;2 General Description of Winding Coil Geometry;248
34.4;3 Mathematical Description of the Coil Shape;249
34.4.1;3.1 Segment 1 – The Linear Outcome from the Slot;249
34.4.2;3.2 Segment 2 – The Coil Curvature;250
34.4.3;3.3 Segment 3 – the Coil Involute;251
34.4.4;3.4 Segment 4 – the Coil Curvature;252
34.4.5;3.5 Segment 5 – the Coil Loop;253
34.4.6;3.6 Segment 6 – the Coil Curvature;254
34.4.7;3.7 Segment 7 – the Coil Involute;254
34.4.8;3.8 Segment 8 – the Coil Curvature;255
34.4.9;3.9 Segments 9 and 10 – Linear Return to the Slot and Slot Part;255
34.4.10;3.10 Comparison with Manufactured Coils;256
34.5;4 Conclusion;258
34.6;Acknowledgement;258
34.7;References;258
35;Equivalent Magnetic Circuit Method Usage in the Synchronous Reluctance Machine Rotor Design;259
35.1;Abstract;259
35.2;1 Introduction;259
35.3;2 Synchronous Reluctance Machine Structure;260
35.3.1;2.1 Synchronous Reluctance Machines Rotors;260
35.4;3 Inner Flux Barriers Rotor Calculation;261
35.4.1;3.1 Analytical Calculations;262
35.4.2;3.2 Simple Equivalent Magnetic Circuit Calculation;262
35.4.3;3.3 Rotor Ribs Addition;265
35.5;4 Conclusion;266
35.6;Acknowledgement;266
35.7;References;266
36;Analysis of Rotor Ventilation System of Air Cooled Synchronous Machine Through Computational Fluid D ...;268
36.1;Abstract;268
36.2;1 Introduction;268
36.2.1;1.1 Turbo Generator Cooling System;268
36.2.2;1.2 Branch Effect;269
36.3;2 Analysis;270
36.4;3 Results;271
36.5;4 Conclusion;274
36.6;Acknowledgment;275
36.7;References;275
37;High-Speed Electrical Machines: Review of Concepts and Currently Used Solutions with Synchronous Mac ...;276
37.1;Abstract;276
37.2;1 Introduction;276
37.3;2 High-Speed Machines with PM;276
37.3.1;2.1 High-Speed Machines with PM – Traction Application;276
37.3.2;2.2 High-Speed Machines with PM – Other Application;280
37.3.3;2.3 Other Types of High-Speed Traction Machines;281
37.4;3 Conclusion;282
37.5;Acknowledgement;283
37.6;References;283
38;Control and Design of a High Power Density PMSM;284
38.1;Abstract;284
38.2;1 Introduction;284
38.3;2 Modeling of PMSM;285
38.4;3 Design of PMSM;287
38.5;4 Simulation Results;288
38.6;5 Conclusion;290
38.7;References;291
39;Magnetic Measurements of Solid Material;292
39.1;Abstract;292
39.2;1 Introduction;292
39.3;2 Experimental;293
39.4;3 Results;295
39.5;4 Conclusion;298
39.6;Acknowledgement;299
39.7;References;299
40;Identification of Induction Machine Electromagnetic Parameters for a Wide Range of Frequency and Flux Density;300
40.1;1 Introduction;300
40.2;2 Measuring Method Description;301
40.2.1;2.1 Induction Machine Equivalent Circuit;301
40.2.2;2.2 Derivation of the Equations;302
40.3;3 Measurement Results;303
40.3.1;3.1 Core Losses and Core Loss Resistance Identification;303
40.3.2;3.2 Magnetizing Inductance Identification;305
40.4;4 Conclusions;305
40.5;References;306
41;Modification of Frame for Synchronous Machine with Permanent Magnet;307
41.1;Abstract;307
41.2;1 Introduction;307
41.3;2 Vibration Measurement and Evaluation;307
41.4;3 Modal Analysis;310
41.5;4 Frame Modification;311
41.6;5 Conclusion;312
41.7;Acknowledgement;312
41.8;References;312
42;Mechatronic System with a Turbo-Generator of Two Different Frequencies;313
42.1;Abstract;313
42.2;1 Introduction;313
42.3;2 Block Diagram of Turbogenerator;314
42.4;3 Time Diagram of Control Signals of Sinusoidal PWM;316
42.5;4 Calculation of Power of MFC and Harmonic Components;318
42.6;5 Conclusion;320
42.7;References;320
43;Test Rig for Determination of Performance Characteristics of High Speed Linear Actuators;322
43.1;Abstract;322
43.2;1 Introduction;322
43.2.1;1.1 Characteristic Performance Parameters of the TTM Systems;324
43.3;2 Structure of the Test Rig;324
43.3.1;2.1 Performance Requirements for the Rig;324
43.3.2;2.2 Conception of the Rig;325
43.3.3;2.3 Realization of the Rig;325
43.4;3 Sample Tests of an Actuator;327
43.5;4 Summary;328
43.6;Acknowledgements;329
43.7;References;329
44;Modelling and Simulation;330
45;Dynamic Analysis of Multispindle Lathe;331
45.1;Abstract;331
45.2;1 Introduction;331
45.3;2 Model of Mechanical System with Flexible Parts;332
45.4;3 Model of Motor with Field-Oriented Vector Control;334
45.5;4 Simulation Results;335
45.5.1;4.1 Dynamic Analysis of Flexible Mechanism;335
45.5.2;4.2 Control Parameters Setting and Response;336
45.6;5 Conclusion;338
45.7;Acknowledgement;338
45.8;References;338
46;Numerical and Experimental Solution of Friction Stir Welding of Plates;340
46.1;Abstract;340
46.2;1 Introduction;340
46.3;2 Numerical Solution by Program SYSWELD;341
46.3.1;2.1 Thermo-Fluid Analysis;341
46.3.2;2.2 Thermo – Mechanical Analysis;343
46.4;3 Measurement of Temperature During FSW;344
46.5;4 Discussion;345
46.6;5 Conclusion;346
46.7;Acknowledgments;346
46.8;References;347
47;Universal HIL Test Platform for Mechatronic Systems;348
47.1;Abstract;348
47.2;1 Introduction;348
47.3;2 HIL Simulation Workplace Design;349
47.4;3 Case Study – HIL Simulation of a DC Drive Control;351
47.5;4 Conclusions;354
47.6;Acknowledgment;355
47.7;Appendix;355
47.8;References;355
48;A Dynamic Feedback Neural Model for Identification of the Robot Manipulator;357
48.1;Abstract;357
48.2;1 Introduction;357
48.3;2 Kinematics Modeling of the Robot Manipulator;358
48.3.1;2.1 Analysis of the Forward Kinematics;358
48.3.2;2.2 Analysis of the Inverse Kinematics;360
48.3.3;2.3 Graphical User Interface of the Robot Manipulator;361
48.4;3 Neural Network Model Based NARX Network Structure;361
48.5;4 Experimental Results;362
48.6;5 Conclusion;364
48.7;References;364
49;Innovative Model of Radial Fluid Bearing for Simulations of Turbocharger Rotordynamics;366
49.1;Abstract;366
49.2;1 Introduction;366
49.3;2 Review of the State of the Art;366
49.4;3 Objectives for Computational Modelling;367
49.5;4 Computational Approach;367
49.5.1;4.1 Innovative Approach Introduction;367
49.5.2;4.2 Numerical Solution of Reynolds Equations;370
49.5.3;4.3 Averaging of Results;372
49.6;5 Model Verification on Full Floating Bearing of Turbocharger Rotor;372
49.7;6 Conclusions;373
49.8;Acknowledgement;373
49.9;References;373
50;The Model of Non-stationary Heat Conduction in a Metal Mould;374
50.1;Abstract;374
50.2;1 Introduction;374
50.3;2 The Mathematical Model of Heat Conduction;375
50.3.1;2.1 Model A - Without Own Heat Radiation of the Mould;376
50.3.2;2.2 Model B - With Own Heat Radiation of the Mould;376
50.4;3 The Influence of Boundary Conditions on the Temperature Field;377
50.4.1;3.1 The Comparison of the Temperature Fields for Different Boundary Conditions;377
50.4.2;3.2 The Calculated Temperature Field and Experimental Measurement;379
50.5;4 Conclusion;380
50.6;Acknowledgement;380
50.7;References;381
51;The Possibility of Applying Neural Networks to Influence Vehicle Energy Consumption by Eco Driving;382
51.1;Abstract;382
51.2;1 Introduction;382
51.2.1;1.1 Problems Defined in Eco-Driving;382
51.3;2 Defining Driving Test of Heavy Duty Vehicle;383
51.3.1;2.1 Path Selection for Driving Test;384
51.4;3 Data Collection from Vehicle;384
51.5;4 The Application of Neural Networks in Vehicle Model Design;386
51.6;5 Conclusion;388
51.7;Acknowledgement;389
51.8;References;389
52;Parametric Model of Human Body for Orthotic Robot Simulation Study;390
52.1;Abstract;390
52.2;1 Introduction – Orthotic Robots and the ‘Veni-Prometheus’ System;390
52.3;2 Purpose of the Model;391
52.4;3 Model Description;392
52.5;4 Discussion;394
52.6;5 Conclusions;396
52.7;References;396
53;Evaluation of Gait and Standing Posture by Software Based on SimMechanics;397
53.1;Abstract;397
53.2;1 Introduction;397
53.3;2 Methods;398
53.3.1;2.1 Measurement Procedure and Model of the Body;398
53.3.2;2.2 Data Analysis;399
53.4;3 Application and Results;401
53.5;4 Discussion;402
53.6;5 Conclusions;403
53.7;Acknowledgements;403
53.8;References;404
54;FEM – Based Simulations of Selected Setups of Magnetic Field Tomography;405
54.1;Abstract;405
54.2;1 Introduction;405
54.3;2 Tested Setups for Magnetic Field Tomography;406
54.3.1;2.1 Four Permanent Magnets Setup;406
54.3.2;2.2 Six Permanent Magnets Setup;406
54.3.3;2.3 Eight Permanent Magnets Setup;407
54.3.4;2.4 Two Permanent Magnets Setup with Additional Objects’ Linear Movement;407
54.4;3 FEM – Modelling and Exemplary Results;408
54.5;4 Result Analysis;409
54.6;5 Conclusions;410
54.7;Acknowledgements;411
54.8;References;411
55;Modelling and Simulation of Vehicle Boot Door;412
55.1;Abstract;412
55.2;1 Introduction;412
55.3;2 System Analysis and Description;412
55.4;3 Dynamic Model of a Boot Door Mechanism;414
55.5;4 Simulation Results and Verification Using Measured Data;416
55.5.1;4.1 Simulations with Real Data;417
55.6;5 Conclusion;418
55.7;References;419
56;Advanced Multi-body Modelling in Mechatronics Education;420
56.1;Abstract;420
56.2;1 Introduction;420
56.3;2 Model;421
56.3.1;2.1 Kinematics;421
56.3.2;2.2 Dynamics;423
56.3.3;2.3 State-Space Model Based on MBS Model with Flexible Bodies;425
56.4;3 Conclusions;426
56.5;Acknowledgement;426
56.6;References;426
57;Control;427
58;Unusual Application of the X3STEP Controller;428
58.1;Abstract;428
58.2;1 Introduction;428
58.3;2 Problem Statement;429
58.4;3 X3STEP Controller;430
58.5;4 Hardware Interface;432
58.6;5 Software Interface;432
58.7;6 Simulations Research;434
58.8;7 Summary;435
58.9;References;436
59;Disturbance Compensation and Control Algorithm with Application for Non-linear Twin Rotor MIMO System;437
59.1;Abstract;437
59.2;1 Introduction;437
59.3;2 Problem Statement;438
59.4;3 Compensation of Disturbances;439
59.5;4 Example;441
59.6;5 Conclusions;443
59.7;Acknowledgement;443
59.8;References;443
60;Model Reference Control for a Class of MIMO System with Dead-Time;445
60.1;Abstract;445
60.2;1 Introduction;445
60.3;2 Problem Formulation;445
60.4;3 Controller Design;447
60.5;4 Concluding Remarks;452
60.6;References;452
61;Robust Control of Uncertain MIMO Plants in Conditions of Output Quantization and Time-Delay;453
61.1;Abstract;453
61.2;1 Introduction;453
61.3;2 Problem Statement;454
61.4;3 Control Law;455
61.5;4 Example;458
61.6;5 Conclusion;459
61.7;Acknowledgement;459
61.8;References;460
62;Speed Estimator for Low Speed PMSM Aerospace Application;461
62.1;Abstract;461
62.2;1 Introduction;461
62.3;2 Speed Control Loop Design and Simulation of Vector Controlled PMSM;462
62.4;3 Conclusion;465
62.5;Acknowledgements;465
62.6;References;466
63;The New Stepper Driver for Low-Cost Arduino Based 3D Printer with Dynamic Stepper Control;467
63.1;Abstract;467
63.2;1 Introduction;467
63.3;2 Torque Design of X and Y Axis Gears;468
63.4;3 General Approach to Stepper Drivers Used in Low-Cost 3D Printers;469
63.5;4 The New Stepper Driver Design;470
63.6;5 Dynamic Stepper Control;472
63.7;6 Comparison of the Results;473
63.8;7 Conclusion;474
63.9;Acknowledgements;474
63.10;References;474
64;Model Based Fault-Tolerant Control for SMA Actuator in Soft Robotics;476
64.1;Abstract;476
64.2;1 Introduction;476
64.3;2 Modelling of SMA-Actuator;477
64.3.1;2.1 Model of Single SMA-Actuator;477
64.3.2;2.2 Experiment Setup and Parameters of Modell;478
64.4;3 Parallel Control for Reality and Model of SMA Actuator;479
64.5;4 Fault-Tolerant Control for Single SMA Actuator;481
64.6;5 Conclusion and Outlook;483
64.7;References;483
65;Design and Verification of FPGA-Based Real-Time HIL Simulator of Induction Motor Drive;484
65.1;1 Introduction;484
65.2;2 HIL Platform Hardware Description;485
65.3;3 HIL Simulator Setup;486
65.3.1;3.1 HIL Model;488
65.4;4 Experimental Results;489
65.5;5 Conclusion;491
65.6;References;491
66;Robust Control of a Robot Arm Using an Optimized PID Controller;493
66.1;Abstract;493
66.2;1 Introduction;493
66.3;2 Dynamic Model of Scorbot ER-V Plus;494
66.4;3 Controller Design of Joint Motors;495
66.5;4 Simulation Results;498
66.6;5 Conclusion;500
66.7;References;500
67;PSO Optimized ADRC Motor Speed Controller for Two Mass System with Backlash;502
67.1;Abstract;502
67.2;1 Introduction;502
67.3;2 Plant Model;503
67.4;3 Control System Structure;504
67.4.1;3.1 2DOF – PI Controller;504
67.4.2;3.2 ADRC Controller;505
67.5;4 Optimization Algorithm;506
67.6;5 Simulation Results;506
67.7;6 Conclusions;509
67.8;References;509
68;Sensors and Measurement;510
69;Separation of Gravitational Acceleration from Acceleration of Human Motion Using Quaternion Based Un ...;511
69.1;Abstract;511
69.2;1 Introduction;511
69.3;2 Method;512
69.3.1;2.1 Instrumentation;512
69.3.2;2.2 Data Processing;513
69.3.3;2.3 Filter Tuning;516
69.4;3 Results;516
69.5;4 Conclusion;517
69.6;Acknowledgements;518
69.7;References;518
70;Methods of Motion Data Analysis of Animal’s Body on Rotating Platform;519
70.1;Abstract;519
70.2;1 Introduction;519
70.3;2 Evaluation Methods;520
70.3.1;2.1 Methods of Evaluation of Time Domain Data;522
70.3.2;2.2 Methods of Evaluation of Relationship Between Measured Variables;524
70.4;3 Experiments and Results;525
70.5;4 Discussion and Conclusion;526
70.6;Acknowledgements;526
70.7;References;526
71;Fabrication and Optical-Electrical Characterization of Al/p-Si/CdO/Au Photodiode;528
71.1;Abstract;528
71.2;1 Introduction;528
71.3;2 Experimental Details;529
71.4;3 Results and Discussions;529
71.5;4 Conclusion;535
71.6;References;535
72;Threshold Selection Based on Extreme Value Theory;537
72.1;1 Introduction;537
72.2;2 Extreme Value Estimation;539
72.3;3 Extreme Value Theory;541
72.4;4 Real Dataset Experiments;543
72.5;5 Conclusions;544
72.6;References;544
73;Development of a Time of Flight Laser Scanner 3D;546
73.1;Abstract;546
73.2;1 Introduction;546
73.3;2 Design of the Laser Scanner;547
73.3.1;2.1 Objectives;547
73.3.2;2.2 Fields of Application;547
73.3.3;2.3 The Proposed Solution [10];548
73.4;3 Control;549
73.4.1;3.1 Data Communication via the CAN Interface;550
73.4.2;3.2 Data Interpretation [11–13];550
73.5;4 Results and Conclusion;551
73.6;References;552
74;Polish Road Signs Detection and Classification System Based on Sign Sketches and ConvNet;554
74.1;Abstract;554
74.2;1 Introduction;554
74.3;2 Related Work;555
74.4;3 Generation of Synthetic Sign Views;556
74.5;4 Deep Convolutional Neural Network;558
74.6;5 Experimental Results;559
74.7;6 Conclusions;560
74.8;Acknowledgement;560
74.9;References;561
75;The Influence of the Learning Set on the Evaluation of Microcalcifications Using Artificial Neural N ...;562
75.1;Abstract;562
75.2;1 Introduction;562
75.3;2 Research Methodology and Results;564
75.4;3 Conclusion;567
75.5;References;568
76;Experimental Measurement of Magnetic Field Generated by Neodymium Magnet;570
76.1;Abstract;570
76.2;1 Introduction;570
76.3;2 Measuring Station;571
76.4;3 Measurements Results;574
76.5;4 Conclusions;577
76.6;References;577
77;Measurement of Power Transistors Dynamic Parameters;579
77.1;Abstract;579
77.2;1 Introduction;579
77.3;2 Measuring Laboratory Workplace;580
77.4;3 Conclusions;585
77.5;Acknowledgements;585
77.6;References;585
78;Measurement of High-Frequency Currents in Power Electronics;586
78.1;1 Introduction;586
78.2;2 Possibilities of Collector Current Measurement;587
78.3;3 Current Transformer Analysis;588
78.3.1;3.1 Current Transformer Numeric Calculation;588
78.3.2;3.2 Experimental Verification of Model Results;589
78.3.3;3.3 Measured Values Explanation;590
78.4;4 Practical Realization of the Current Transformer;591
78.5;5 Conclusions;592
78.6;References;593
79;Counting Pedestrians in Inner Spaces Using Optical Flow Algorithm;594
79.1;Abstract;594
79.2;1 Introduction;594
79.3;2 Reviewed Approaches;595
79.4;3 Used Approach;595
79.5;4 Achievements;596
79.6;5 Conclusion;599
79.7;References;599
80;Comparison of Vibration and Noise Measurement of Induction Machine Under Static Eccentricity;600
80.1;Abstract;600
80.2;1 Introduction;600
80.3;2 Measurement Description;601
80.4;3 Data Evaluation;603
80.5;4 Conclusions;606
80.6;Acknowledgements;606
80.7;References;606
81;A Distributed Measurement System for Helium Spill Monitoring;607
81.1;Abstract;607
81.2;1 Introduction;607
81.3;2 Measurement System for Helium Spill Monitoring;608
81.4;3 Ultrasonic Helium Detector;610
81.5;4 Acoustic Helium Detection – Principle of Operation;611
81.6;5 Numerical Simulations and Comparison with Initial Test Results;612
81.7;6 Final Remarks;613
81.8;References;613
82;Influence of Measurement Parameters Settings on the Results of the CT Measurement;615
82.1;Abstract;615
82.2;1 Introduction;615
82.3;2 Study Procedure;616
82.4;3 Results;618
82.5;4 Conclusions;619
82.6;Acknowledgements;620
82.7;References;620
83;Measurement System for Magnetic Field Sensors Testing with Earth’s Magnetic Field Compensation;621
83.1;Abstract;621
83.2;1 Introduction;621
83.3;2 System Setup;622
83.3.1;2.1 The Main Field Generating Coils;622
83.3.2;2.2 Connection Schematic;622
83.3.3;2.3 LabView Software;623
83.4;3 Measurement Results;624
83.5;4 Conclusion;626
83.6;References;626
84;DeepEMGNet: An Application for Efficient Discrimination of ALS and Normal EMG Signals;627
84.1;Abstract;627
84.2;1 Introduction;627
84.3;2 Proposed Method;629
84.3.1;2.1 Short Time Fourier Transform (STFT);629
84.3.2;2.2 Convolutional Neural Networks (CNN);629
84.4;3 Dataset and Experiments;630
84.4.1;3.1 Dataset;630
84.4.2;3.2 Experimental Setup and Results;630
84.5;4 Conclusions;632
84.6;References;632
85;Comparison of Interpolation Methods for Atmospheric Pressure Determination with Help of TDOA System;634
85.1;Abstract;634
85.2;1 Introduction;634
85.3;2 UFE Data Format (ASTERIX);635
85.4;3 Extraction of Data;635
85.5;4 Data Interpolation;636
85.5.1;4.1 Interpolation Area Selection;637
85.5.2;4.2 Data Interpolation - 16.12.2010;637
85.6;5 Conclusions;641
85.7;Reference;641
86;Robotics;642
87;Determination of Optimal Local Path for Mobile Robot;643
87.1;Abstract;643
87.2;1 Introduction;643
87.3;2 Path Optimization;644
87.3.1;2.1 Path, Robot and World Representation;644
87.3.2;2.2 Fitness Function;644
87.3.3;2.3 Optimization;645
87.3.4;2.4 Refinement;646
87.4;3 Results;647
87.5;4 Conclusions;649
87.6;Acknowledgement;649
87.7;References;649
88;Development of Dual Wiimote-Based 3D Localization Schemes for Mobile Robot and Quadcopter Integration;650
88.1;Abstract;650
88.2;1 Introduction;650
88.3;2 Wiimote 3D Localization System;652
88.4;3 Realization of Wiimote 3D Localization;652
88.5;4 Dual Wiimote 3D Localization;654
88.6;5 Demonstrations;656
88.7;6 Discussion, Conclusion, and Future Work;657
88.8;Acknowledgement;657
88.9;References;657
89;Battery-Powered Autonomous Robot for Cleaning of Dusty Photovoltaic Panels in Desert Zones;659
89.1;Abstract;659
89.2;1 Introduction;659
89.3;2 The Mechanical Design;661
89.3.1;2.1 Technical Specifications;661
89.3.2;2.2 The Cleaning Strategy;662
89.3.3;2.3 The Functional Design;663
89.3.4;2.4 The Prototype;664
89.4;3 The Electronic Control System Design;664
89.5;4 Experimental Verification of the Robot;666
89.6;References;666
90;Design and Control of Diving Mechanism for the Biomimetic Robotic Fish;668
90.1;Abstract;668
90.2;1 Introduction;668
90.3;2 Mathematical Modelling of the Gravity Center;669
90.4;3 Diving Mechanism for the Depth Control;670
90.5;4 Results;672
90.6;5 Conclusion;675
90.7;Acknowledgement;676
90.8;References;676
91;Standards to Support Military Autonomous System Life Cycle;677
91.1;Abstract;677
91.2;1 Introduction;677
91.3;2 AS Life Cycle in Military Domain;678
91.4;3 Gap Analysis of Standards and Best Practices for AS Life Cycle;680
91.5;4 Composition of MSDL and CBML into AS Life Cycle;682
91.6;5 Conclusion;684
91.7;References;684
92;Robotic Assistant for the Elderly - Rehabilitation Walker;685
92.1;Abstract;685
92.2;1 Introduction;685
92.3;2 General Working Principles;686
92.3.1;2.1 Design of a Robotic Walker;686
92.3.2;2.2 Criteria and Calculations for Stability;688
92.3.3;2.3 Operating Principle of the Robotic Assistant;690
92.4;3 Conclusion;691
92.5;References;692
93;Motion Control of Three-Rotor Unmanned Underwater Vehicle;693
93.1;Abstract;693
93.2;1 Introduction;693
93.3;2 Description of the UUV;694
93.4;3 Motion Equations of the Three-Rotor UUV;695
93.4.1;3.1 UUV Reference Frames;695
93.4.2;3.2 UUV Modeling;696
93.5;4 Guidance and Trajectory Tracking;698
93.6;5 Conclusion;700
93.7;References;700
94;Smart Systems;702
95;From Simulation to Manufacturing of Piezoelectric Micromachined AlN Membrane;703
95.1;Abstract;703
95.2;1 Introduction;703
95.3;2 Piezoelectric Layer Properties;704
95.4;3 Experimental;704
95.4.1;3.1 Simulation Results;704
95.4.2;3.2 Mechanical Tests of AlN Piezo Layer;706
95.4.3;3.3 Development of AlN Layer Technology;707
95.4.4;3.4 Electrical Measurements of the Manufactured AlN Layer;709
95.5;4 Summary;710
95.6;Acknowledgement;710
95.7;References;710
96;Probabilistic Reasoning in Diagnostic Expert System for Smart Homes;712
96.1;Abstract;712
96.2;1 Introduction;712
96.3;2 General Expert System Architecture;712
96.3.1;2.1 Inference Mechanism;713
96.3.2;2.2 Inference Mechanism in Numbers;715
96.4;3 Simulation Experiment with Three Evidences;717
96.5;4 Conclusion;719
96.6;Acknowledgement;719
96.7;References;719
97;Development of Smart and Dynamic Floral Clothing Accessories;720
97.1;Abstract;720
97.2;1 Introduction;720
97.3;2 Concept Design of the Floral Clothing Accessory;722
97.4;3 Actuating Elements by Shape Memory Alloy (SMA);723
97.4.1;3.1 Measurement of the Performances of the SMA Wire;724
97.4.2;3.2 Actuating Element by Helical Spring-Shaped SMA;724
97.5;4 Design and Fabrication of SMA Actuating Mechanisms;725
97.6;5 Electronic Control System;726
97.6.1;5.1 Electronic Components;726
97.6.2;5.2 Drive and Control of the Actuating Mechanism by Using Arduino;727
97.7;6 Conclusion;728
97.8;References;728
98;Numerical Wave Tank Analysis for Energy Harvesting with Oscillating Water Column;730
98.1;Abstract;730
98.2;1 Introduction;730
98.3;2 Materials and Methods;731
98.3.1;2.1 General Working Principles;731
98.3.2;2.2 Numerical Wave Tank and Oscillating Water Column;732
98.3.3;2.3 User Defined Function;734
98.4;3 Results;735
98.4.1;3.1 Validation;735
98.4.2;3.2 Cases;735
98.4.3;3.3 Power Output;736
98.5;4 Conclusions;737
98.6;References;738
99;Coil Optimization for Linear Electromagnetic Energy Harvesters with Non-uniform Magnetic Field;739
99.1;Abstract;739
99.2;1 Introduction;739
99.3;2 Linear Electromagnetic Harvester Model;740
99.4;3 Model of Magnetic Field in the Coil Area;741
99.5;4 Coil Optimization Algorithm;743
99.6;5 Results and Discussion;744
99.7;6 Conclusions;745
99.8;Acknowledgement;746
99.9;References;746
100;Performance Analysis of Wave Energy Harvesting System with Piezoelectric Element;747
100.1;Abstract;747
100.2;1 Introduction;747
100.3;2 Experimental Setup;748
100.4;3 Results and Discussion;750
100.5;4 Conclusion;753
100.6;References;753
101;Author Index;754



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.