Buzug | Einführung in die Computertomographie | Buch | 978-3-642-62184-0 | sack.de

Buch, Deutsch, 420 Seiten, Paperback, Format (B × H): 193 mm x 270 mm, Gewicht: 931 g

Buzug

Einführung in die Computertomographie

Mathematisch-physikalische Grundlagen der Bildrekonstruktion

Buch, Deutsch, 420 Seiten, Paperback, Format (B × H): 193 mm x 270 mm, Gewicht: 931 g

ISBN: 978-3-642-62184-0
Verlag: Springer


Das Buch deckt neben den Themen der Entstehung, der Eigenschaften sowie Detektion von Röntgenstrahlen, die Entwicklungshistorie der Computertomographie, die elementaren Methoden der Signalverarbeitung und insbesondere die Signalverarbeitungsverfahren der Computertomographie ab. Hierbei wird Wert auf die ausführliche Darstellung der Mathematik der zwei- und dreidimensionalen Rekonstruktionsverfahren gelegt. Neben der ausführlichen Erklärung der theoretischen Konzepte wird auf die praktischen Randbedingungen der technischen Realisierung sowie auf die auftretenden Bildartefakte besonders eingegangen.
Buzug Einführung in die Computertomographie jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


1 Einleitung.- 2 Röntgenstrahlung.- 2.1 Erzeugung von Röntgenstrahlung.- 2.2 Absorption und Streuung von Röntgenstrahlung.- 2.3 Detektion von Röntgenstrahlung.- 2.4 Statistik der Röntgenquanten.- 3 Historie der Computertomographie.- 3.1 Tomosynthese.- 3.2 Rotation-Translation des Nadelstrahls (1. Generation).- 3.3 Rotation-Translation des Fächerstrahls (2. Generation).- 3.4 Rotation-Rotation in Einzelschichten (3. Generation).- 3.5 Rotation-Fix mit geschlossenem Detektorring (4. Generation).- 3.6 Fix-Fix mit geschlossenem Detektorring (EBCT).- 3.7 Rotation-Rotation in der Spiralbahn.- 3.8 Rotation-Rotation in Kegelstrahlgeometrie.- 3.9 Micro-CT.- 3.10 PET-CT Kombinationsgeräte.- 3.11 Optisch-fotografische Rekonstruktionstechnik.- 4 Elementare Methoden der Signalverarbeitung.- 4.1 Signale.- 4.2 Räumliche Elementarsignale.- 4.3 Systeme.- 4.4 Signalübertragung.- 4.5 Diracsto?.- 4.6 Dirackamm.- 4.7 Sto?antwort.- 4.8 Übertragungsfunktion.- 4.9 Fouriertransformation.- 4.10 Faltungssatz.- 4.11 Parseval-Theorem.- 4.12 Filtern im Frequenzraum.- 4.13 Hankel-Transformation.- 4.14 Abel-Transformation.- 4.15 Hilbert-Transformation.- 4.16 Abtasttheorem und Nyquist-Kriterium.- 4.17 Wiener-Khintchine-Theorem.- 4.18 Fouriertransformation diskreter Signale (DFT).- 4.19 Finite diskrete Fouriertransformation.- 4.20 z-Transformation.- 4.21 Chirp-z-Transformation.- 5 Zweidimensionale Rekonstruktionsverfahren.- 5.1 Radontransformation.- 5.2 Inverse Radontransformation und Fourier-Slice-Theorem.- 5.3 Implementation der direkten inversen Radontransformation.- 5.4 Linogramm-Methode.- 5.5 Rückprojektion.- 5.6 Gefilterte Rückprojektion.- 5.7 Vergleich von Rückprojektion und gefilterter Rückprojektion.- 5.8 Filtered Layergram: Filterung nach der Rückprojektion.- 5.9 GefilterteRückprojektion und Radonsche Lösung.- 5.10 Cormack-Transformation.- 5.11 Algebraische Rekonstruktionsverfahren.- 5.12 Lösung durch Singulärwertzerlegung.- 5.13 Iterative Rekonstruktion mit ART.- 5.14 Maximum-Likelihood-Verfahren.- 5.15 Zusammenfassung der zweidimensionalen Verfahren.- 6 Technische Realisierung.- 6.1 Rekonstruktion mit realen Signalen.- 6.2 Praktische Implementation der gefilterten Rückprojektion.- 6.3 Minimale Anzahl der Detektorelemente.- 6.4 Minimale Anzahl der Projektionen.- 6.5 Geometrie des Fächerstrahlsystems.- 6.6 Bildrekonstruktion für die Fächerstrahlgeometrie.- 6.7 Detektorviertelversatz und Abtasttheorem.- 7 Dreidimensionale Rekonstruktionsverfahren.- 7.1 Sekundärrekonstruktion aus 2D Schichtenfolgen.- 7.2 Spiral-CT.- 7.3 Rekonstruktion in Parallelstrahlgeometrie.- 7.4 Exakte Rekonstruktionsverfahren in Kegelstrahlgeometrie.- 7.5 Approximative Rekonstruktionen in Kegelstrahlgeometrie.- 7.6 Helix-Kegelstrahlrekonstruktionsverfahren.- 8 Beurteilung der Bildqualität.- 8.1 Die Modulationstransferfunktion in der Bildgebung.- 8.2 Modulationstransferfunktion und Point-Spread-Function.- 8.3 Die Modulationstransferfunktion bei der Computertomographie.- 8.4 SNR, DQE und ROC.- 8.5 2D-Artefakte.- 8.6 3D-Artefakte.- 8.7 Rauschen in rekonstruierten Bildern.- 9 Praktische Aspekte der Computertomographie.- 9.1 Aufnahmeplanung.- 9.2 Datendarstellung.- Literatur.


geboren 1963 in Kiel. 1989 Physikdiplom Universität Lübeck. 1993 bis Ende 1994 Tätigkeit an der Forschungsanstalt der Bundeswehr für Wasserschall- und Geophysik (FWG). Seit Oktober 1998 Professor für Physik und Medizintechnik im Fachbereich Mathematik und Technik des RheinAhrCampus Remagen.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.