E-Book, Englisch, 373 Seiten
Cacuci / Navon / Ionescu-Bujor Computational Methods for Data Evaluation and Assimilation
Erscheinungsjahr 2013
ISBN: 978-1-58488-736-2
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 373 Seiten
ISBN: 978-1-58488-736-2
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Data evaluation and data combination require the use of a wide range of probability theory concepts and tools, from deductive statistics mainly concerning frequencies and sample tallies to inductive inference for assimilating non-frequency data and a priori knowledge. Computational Methods for Data Evaluation and Assimilation presents interdisciplinary methods for integrating experimental and computational information. This self-contained book shows how the methods can be applied in many scientific and engineering areas.
After presenting the fundamentals underlying the evaluation of experimental data, the book explains how to estimate covariances and confidence intervals from experimental data. It then describes algorithms for both unconstrained and constrained minimization of large-scale systems, such as time-dependent variational data assimilation in weather prediction and similar applications in the geophysical sciences. The book also discusses several basic principles of four-dimensional variational assimilation (4D VAR) and highlights specific difficulties in applying 4D VAR to large-scale operational numerical weather prediction models.
Zielgruppe
Electrical, mechanical, and nuclear engineers, applied mathematicians, meteorologists, and oceanographers.
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
Weitere Infos & Material
Experimental Data Evaluation: Basic Concepts
Experimental Data Uncertainties
Uncertainties and Probabilities
Moments, Means, and Covariances
Computation of Means and Variances from Measurements
Statistical Estimation of Means, Covariances, and Confidence Intervals
Assigning Prior Probability Distributions under Incomplete Information
Evaluation of Consistent Data with Independent Random Errors
Evaluation of Consistent Data with Random and Systematic Errors
Evaluation of Discrepant Data with Unrecognized Random Errors
Notes and Remarks
Optimization Methods for Large-Scale Data Assimilation
Introduction
Limited Memory Quasi-Newton (LMQN) Algorithms for Unconstrained Minimization
Truncated-Newton (T-N) Methods
Hessian Information in Optimization
Nondifferentiable Minimization: Bundle Methods
Step-Size Search
Trust Region Methods
Scaling and Preconditioning
Nonlinearly Constrained Minimization
Global Optimization
Basic Principles of 4D VAR
Nudging Methods (Newtonian Relaxation)
Optimal Interpolation, Three-Dimensional Variational, and Physical Space Statistical Analysis Methods
Estimation of Error Covariance Matrices
Framework of Time-Dependent Four-Dimensional Variational Data Assimilation (4D VAR)
Numerical Experience with Unconstrained Minimization Methods for 4D VAR Using the Shallow Water Equations
Treatment of Model Errors in Variational Data Assimilation
4D VAR in Numerical Weather Prediction Models
The Objective of 4D VAR
Computation of Cost Functional Gradient Using the Adjoint Model
Adjoint Coding of the FFT and of the Inverse FFT
Developing Adjoint Programs for Interpolations and "On/Off" Processes
Construction of Background Covariance Matrices
Characterization of Model Errors in 4D VAR
The Incremental 4D VAR Algorithm
Appendix A
Frequently Encountered Probability Distributions
Appendix B
Elements of Functional Analysis for Data Analysis and Assimilation
Appendix C
Parameter Identification and Estimation
Bibliography
Index