Case | The Strength of Materials | E-Book | sack.de
E-Book

E-Book, Englisch, 574 Seiten, Web PDF

Case The Strength of Materials

A Treatise on the Theory of Stress Calculations for Engineers
2. Auflage 2014
ISBN: 978-1-4832-2155-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

A Treatise on the Theory of Stress Calculations for Engineers

E-Book, Englisch, 574 Seiten, Web PDF

ISBN: 978-1-4832-2155-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



The Strength of Materials

Case The Strength of Materials jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover
;1
2;The Strength of Materials: A Treatise on the Theory of Stress Calculations for Engineers;2
3;Copyright Page
;3
4;Table of Contents;8
5;Dedication
;4
6;PREFACE TO FIRST EDITION;6
7;PREFACE TO SECOND EDITION;7
8;CHAPTER I.
DIRECT STRESSES;10
8.1;1. The Purpose of the Theory of Stresses;10
8.2;2. Definitions of Load and Stress;10
8.3;3. Measurement of Stress;11
8.4;4. Strain;12
8.5;5. Measurement of Strain in Tension and Compression;12
8.6;6. Hooke's Law;12
8.7;7. Young's Modulus;13
8.8;8. Stress-Strain Diagrams;14
8.9;9. Magnitudes of Stresses and Strains;16
8.10;10. Limitations and Scope of Mathematical Theory;16
8.11;11. Factor of Safety and Working Stress;17
8.12;12. Fluctuating Stresse;18
8.13;13. Principle of St. Venant;19
8.14;14. Initial Stresses;20
8.15;15. Rods of Varying Section, and Distributed Axial Loads;21
8.16;16. Composite Bars in Tension or Compression;23
8.17;17. Adhesion Stress in Reinforced Concrete;24
8.18;18. Temperature Stresses;25
8.19;19. Temperature Stresses in Composite Rods;26
8.20;20. Abrupt Changes of Section;27
8.21;21. Work Done During Tension and Compression;28
8.22;22. Resilience;29
8.23;23. Stress Due to Sudden Application of Load;29
8.24;24. Waves of Stress;30
8.25;25. Velocity of Propagation of Stress in a Straight Rod;31
8.26;26. Maximum Stress;32
8.27;27. Stress in a Rotating Ring;34
8.28;28. Poisson's Ratio;35
8.29;29. Strain Due to Two Stresses at Right Angles;36
8.30;30. Change of Area and Volume Due to Strain;37
8.31;31. Bulk Modulus;37
8.32;32. Relation between E and K;37
8.33;33. Modified Values of E when Lateral Strain is Prevented;38
9;CHAPTER II. DISPLACEMENT DIAGRAMS AND REDUNDANT FRAMES;43
9.1;34. Displacement Diagrams;43
9.2;35. Application of the Principle of Virtual Work;46
9.3;36. Simply-stiff and Redundant Frames;47
9.4;37. Conditions for Simple Stiffness;47
9.5;38. Self-strained Frameworks;48
9.6;39. Stresses in Redundant Frames;48
9.7;40. Strain Energy of a Framework;49
9.8;41. Theorem Relating to the Strain Energy of a Framework;49
9.9;42. Second Theorem Relating to the Strain Energy of a Frame;51
9.10;43. The Theorem of Least Work for a Framework which is not Self-strained;52
9.11;44. Method of Calculating Stresses in Redundant Frames
which are not Self-strained;53
9.12;45. Frameworks which are
Self-strained;56
9.13;46. Alternative Method: Use of Displacement Diagrams;56
10;CHAPTER III.
SHEARING STRESSES;63
10.1;47. Shearing Stress;63
10.2;48. Complementary Shear Stresses;65
10.3;49. The Shearing Stresses on a Cross Section must always Actin Directions Tangential to the Boundary;67
10.4;50. Measurement of Shear Stress;67
10.5;51. Shear Strain;69
10.6;52. Modulus of Rigidity;69
10.7;53. Strain Energy due to Shear;70
11;CHAPTER IV.
RIVETED JOINTS;72
11.1;54.
Introductory;72
11.2;55. Possible Types of Failure of Simple Riveted Joints,
Neglecting Friction;73
11.3;56. Group-Riveted Joints;76
11.4;57. Eccentric Loads;77
12;CHAPTER V. ANALYSIS OF STRESS AND STRAIN. COMPOUND STRESSES: ANALYSIS OF STRESS;81
12.1;58. Introductory;81
12.2;59. Stress-components on any Plane due to a Direct Stresson a Given Plane;81
12.3;60. Stress-components on any Plane due to a Shearing Stress
on a Given Plane;82
12.4;61. General Two-dimensional Stress System;83
12.5;62. Stress-components on any Plane in a General Two-dimensional
Stress-system;84
12.6;63. Principal Planes;84
12.7;64. To Find the Principal Stresses;85
12.8;65. The Principal Stresses Found from First Principles;85
12.9;66. Maxi-mum Shear Stresses;86
12.10;67. Strain in any Direction due to Strain in a Given Direction;87
12.11;68. To Find the Direct Strain in Any Direction due to a Given
Shear Strain;88
12.12;69. General Two-Dimensional Strain;88
12.13;70. Maximum Shear Strain;89
12.14;71. Principal Strains
;90
12.15;72. Single Direct Stress Required to Produce same Maximum
Strain as a Given Stress System;90
12.16;73. Relations Between E, C, K and m;91
12.17;74. Strain Energy of Combined Stresses;92
12.18;75. Principal Stresses in Three-Dimensional System;92
12.19;76. Strains in Three-Dimensional Stress System;92
12.20;77. Strain Energy in Three Dimensions;93
13;CHAPTER VI.
FAILURE OF MATERIALS UNDER COMPOUND STRESSES;95
13.1;78. Introductory;95
13.2;79. The Various Theories of Failure;96
13.3;80. The Significance of these Theories;97
13.4;81. Representation of the above Theories;98
13.5;82. Analysis of Experiments;101
14;CHAPTER VII. THIN CYLINDRICAL AND SPHERICAL SHELLS UNDER
INTERNAL PRESSURE;106
14.1;83. Introductory;106
14.2;84. Thin Cylindrical Shell of Circular Section;106
14.3;85. Thin Spherical Shell under Internal Pressure;107
14.4;86. Thin Cylindrical Shell with Hemispherical Ends;108
14.5;87. Thin Tube under External Pressure;110
15;CHAPTER VIII.
THE TORSION OF CIRCULAR SHAFTS;113
15.1;88. Introductory;113
15.2;89. Relations between Twisting Moment, Twist and Shear Stress;113
15.3;90. Principal Stresses in a Twisted Shaft;115
15.4;91. Torsion Combined with Thrust or Tension;118
15.5;92. Strain Energy of Torsion;119
15.6;93. Keyways and Serrations;120
16;CHAPTER IX.
BENDING MOMENTS AND SHEARING FORCES DUE TOSTEADY LOADS;123
16.1;94. Bending Moments and Shearing Forces Deftned;123
16.2;95. Concentrated and Distributed Loads;124
16.3;96. Relation between Load, Shearing Force and Bending Moment;125
16.4;97. Cantilever with Concentrated Load;127
16.5;98. Cantilever with Uniformly Distributed Load;127
16.6;99. Cantilever with Non-uniformly Distributed Load;128
16.7;100. Cantilever with any Manner of Loads;129
16.8;101. Freely Supported Beam with Concentrated Load;131
16.9;102. Freely Supported Beam with Uniformly Distributed Load;133
16.10;103. FreelY' Supported Beam with Non-uniformly Distributed
Load;134
16.11;104. Another Graphical Method of Drawing Bending-Moment
Diagrams;135
16.12;105. Freely Supported Beam with Couples applied to Both Ends;137
16.13;106. Freely Supported Beam with Couple applied Between
the Supports;137
16.14;107. Beam Freely Supported at each End, carrying a Uniformly Distributed Load, acted on by Couples at both Ends;138
16.15;108. Freely Supported Beam with Uniformly Distributed Loadover Part of the Length;140
16.16;108a. Useful General Method for Drawing Bending Moment Diagrams;141
17;CHAPTER X. BENDING MOMENTS AND SHEARING FORCES DUE TO
TRAVELLING LOADS;151
17.1;109. Introductory;151
17.2;110. A Single Concentrated Load Crossing a Bearn;151
17.3;111. Uniformly Distributed Travelling Load of Sufficient Length to Cover the Whole Span;153
17.4;112. Two Concentrated Loads;154
17.5;113. Several Concentrated Loads;158
17.6;114. Influence Lines;161
17.7;115. Single Concentrated Load;161
17.8;116. Uniformly Distributed Load;162
18;CHAPTER XI.
LONGITUDINAL STRESSES IN BEAMS;164
18.1;117. Physical
Discussion;164
18.2;118. The Theory of Uniform Bending;166
18.3;119. Modulus of Section;169
18.4;120. Application to Practical Cases of Bending;169
18.5;121. Moment of Resistance of Section;169
18.6;122. Beams having Initial Curvature;170
18.7;123. Beams made of Materials having Different Strengths in Tension and Compression;170
18.8;124. Reinforced Concrete;173
18.9;125. reinforced Concrete Beam of Rectangular Section;175
18.10;126. Oblique, or Unsymmetrical Bendin;179
18.11;127. Geometrically Similar Beams;182
18.12;128. Strain Energy Due to Normal Stresses;183
18.13;129. Change of Cross Section in Uniform Bending;183
18.14;130. Secondary Stresses in Beams;184
18.15;131. General Properties of Moments of Inertia;185
18.16;132. Given the Moments of Inertia about the Principal Axes, to Find the Moments of Inertia about any other Line through the Centroid of the Area;185
18.17;133. To Find the Principal Moments of Inertia;186
18.18;134. Ellipse of Inertia, or Momental
Ellipse;187
18.19;135. Given the Moment of Inertia about an Axis through the Centroid of an Area, to Find the Moment of Inertia about any
other Parallel Axis;187
18.20;136. Graphical Determination of Moment of Inertia of an
Irregular Section;188
18.21;137. Table of Moments of Inertia;188
18.22;138. Note on J
Sections;190
19;CHAPTER XII.
BENDING STRESSES AND DIRECT STRESSES COMBINED;195
19.1;139. Introductory;195
19.2;1404.
Stress Due to Combined Bending and Thrust;195
19.3;141. Eccentric End Load;197
19.4;142. Circular Section;197
19.5;143. Rectangular Section;198
19.6;144. Unsymmetrical Bending with Eccentric End Load;198
19.7;145. Core of Rectangular Section;198
19.8;146. Bending and Axial Thrust: No Tensile Stresses;201
19.9;147. Bending and Axial Thrust: When there are Tensile Stresses;203
19.10;148. Bending and Axial Tension Combined;205
20;CHAPTER XIII.
SHEARING STRESSES IN BEAMS;209
20.1;149. Introductory;209
20.2;150. Elementary Treatment of the Distribution of Shearing Stress;209
20.3;151. Special Cases; Beams of Constant Section;211
20.4;152. Shear in Built-up Plate Girders;215
20.5;153. General Remarks on Shearing Stresses in Beam;215
20.6;154. Principal Stresses in Beams;216
20.7;155. Superimposed Beams;219
20.8;156. Shear in Reinforced Concrete Beams;220
20.9;157. Shear in Oblique Bending;222
21;CHAPTER XIV.
THE DEFLECTION OF BEAMS;225
21.1;158. Introductory;225
21.2;159. General Equations;225
21.3;160. Reinforced Concrete Beams;228
21.4;161. Cantilever with Concentrated Load;228
21.5;162. Cantilever with Uniformly Distributed Load;229
21.6;163. Supported Cantilever with Distributed Load;229
21.7;164. Beam with Uniform Bending Moment;232
21.8;165. Beam Simply Supported at the Ends and carrying a
Uniformly Distributed Load;233
21.9;166. Freely Supported Beam with Concentrated Load;234
21.10;167. Rules for applying Macaulay's Method;235
21.11;168. Freely Supported Beam with Distributed Load over a
Portion of the Span;236
21.12;169. Beam Supported at Each End, with a Couple Applied at
an Intermediate Point;237
21.13;170. Beam with Terminal Couples and Distributed Load;240
21.14;171. Relative Movement of Supports;241
21.15;172. Beams with Non-Uniformly Distributed Load: Graphical Treatment;241
21.16;173. Simply Supported Beam;242
21.17;174. Cantilever with Irregular Load;244
21.18;175. Beams of Varying Section;245
21.19;176. Non-Uniformly Distributed Load and Terminal Couples:
Expressions for the Slopes;248
21.20;177. Non-Uniformly Distributed Load and Terminal Couples, with Varying Cross Section;249
21.21;178. Beam Acted on by Terminal Couples and Carrying a Concentrated Load;250
21.22;179. Introductory;251
21.23;180. Freely Supported Beam with Sinusoidal Distribution of
Load;251
21.24;181. Freely Supported Beam with Uniformly Distributed Load;252
21.25;182. Freely Supported Beam with Concentrated Load;252
21.26;183. Introductory;253
21.27;184. Cantilever of Uniform Rectangular Section with Concentrated Load at the End;253
21.28;185. Cantilever with Uniformly Distributed Load;254
22;CHAPTER XV. BUILT IN, OR ENCASTRÉ, BEAMS;258
22.1;186. Introductory;258
22.2;187. Encastré
Beam with Uniformly Distributed Load;259
22.3;188. Encastré
Beam with Single Concentrated Load;259
22.4;189. Encastré Beam with Irregular
Loading;260
22.5;190. Varying Section;261
22.6;191. Disadvantages of Built-in Beams;261
22.7;192. Effect of Sinking of Supports;262
23;CHAPTER XVI.
CONTINUOUS BEAMS;266
23.1;193. Fixing Moments at the Supports;266
23.2;194. Theorem of Three Moments for Uniformly Distributed Load;266
23.3;195. Theorem of Three Moments for Concentrated Loads;268
23.4;196. Theorem of Three Moments for Irregular
Loading;274
23.5;197. Irregular Loading and Varying Section;275
23.6;198. Disadvantages of Continuous Beam;275
23.7;199. Hinged Joints in the Spans;275
23.8;200. General Equations;277
23.9;201. Single Load at the Centre of a Long Beam;278
24;CHAPTER XVII.
RIGID ARCHES;281
24.1;202. General Discussion;281
24.2;203. Arch Hinged only at the Abutments;282
24.3;204. Arch Built-in at Both Ends;283
24.4;205. Deflection of Arched Ribs;284
24.5;206. Temperature Stresses;286
24.6;207. Two-hinged Parabolic Arch with Uniformly Distributed
Load;289
24.7;208. Two-hinged Parabolic Arch with Concentrated Load;290
24.8;209. Built-in Parabolic Arch with Uniformly Distributed Load;291
24.9;210. Built-in Parabolic Arch with Concentrated Load;291
24.10;211. Piston Rings;292
25;CHAPTER XVIII.
STRUTS OF UNIFORM SECTION;297
25.1;212. Statement of the Problem;297
25.2;213. Strut Pin-jointed at Both Ends;297
25.3;214. Limitations of Euler's Formula;299
25.4;215. Strut with Eccentric End-Load;301
25.5;216. The Effect of Initial Crookedness;304
25.6;217. Strut with One End Encastre, the other End being Freeto Rotate;306
25.7;218. Strut with One End Encastré,
the Other End being Freeto take up any Position;307
25.8;219. Strut with Both Ends
Encastré;308
25.9;220. The Imperfections of Real Struts;309
25.10;221. Eccentricity of Loading;310
25.11;222. Initial Curvature;310
25.12;223. Equivalent Eccentricity;311
25.13;224. Reduction in Strength;311
25.14;225. End Conditions;312
25.15;226. Range of the Euler Formula;312
25.16;227. Empirical
Formulmæ;314
25.17;228. The Rankine-Gordon Formula;315
25.18;229. Straight Line
Formulræ;316
25.19;230. Johnson's Parabolic Formula;317
25.20;231. Fidler's Formula;318
25.21;232. Perry's Formula;318
25.22;233. Robertson's Formula;318
25.23;234. Author's Formula;318
25.24;235. Stress Determining Strut Failure;319
25.25;236. Factors of Safety for Struts;319
25.26;237. Shearing Forces in Struts;320
25.27;238. Braced Struts;322
25.28;239. Equivalent Eccentricity;327
25.29;240. Crinkling;327
25.30;241. Short Struts where Bending is Negligible;330
25.31;242. Long Struts;331
26;CHAPTER XIX.
TAPERED STRUTS;337
26.1;243. Introductory;337
26.2;244. General Equations;337
26.3;245. Solid Strut of Uniform Stress;340
26.4;246. Tapered Hollow Struts of Uniform Thickness;344
26.5;247. Elliptically Tapered Struts;347
26.6;248. Rules for Design of Straight-Taper Struts;348
26.7;249. To Find the Failing Load of a Solid Strut of Given
Shape;349
26.8;250. To Find the Euler Crippling Load of a Strut Symmetrical
about the Central Section;349
27;CHAPTER XX. BEAMB UNDER LATERAL AND LONGITUDINAL LOADS
COMBINED;352
27.1;251. Deflection Due to Lateral Loads Influenced by End Loads;352
27.2;252. Deem Supported at Each End, Carrying a Uniformly Distributed Transverse Load, and
End Thrus;352
27.3;253. Beam Supported at Each End, Loaded with a Uniformly Distributed Lateral Load, Terminal Couples and End Thrust;355
27.4;254. Approximate
Formulmæ;358
27.5;255. Continuous Beams with Longitudinal Forces and Lateral Loads;359
28;CHAPTER XXI. FRAMEWORKS WITH STIFF JOINTS;365
28.1;256. Nature of the Problem;365
28.2;257. Rectangular Portal;365
28.3;258. Secondary Stresses in Trianaulated Frameworks;368
28.4;259. Secondary Stresses Due to Rigid Joints;369
28.5;260. Effects of Lateral Loads;373
28.6;261. Effects of End Loads;373
29;CHAPTER XXII.
BENDING COMBINED WITH TORSION AND THRUST;377
29.1;262. Introductory;377
29.2;263. Torsion Combined with Pure Bending;377
30;XXIII. Stability of Bent and Twisted Rods;384
30.1;268. Non-Circular Rods;385
30.2;269. Stability of Thin Deep Cantilever with Concentrated Load;386
30.3;270. Thin Deep Cantilever with
Distributed Load;388
30.4;271. Thin Deep Beam under Constant Bending Moment;389
30.5;272. The Case of
I-Beams;390
30.6;273. Uniform Bending Moment;391
30.7;274. Other Cases;391
31;CHAPTER XXIV.
SPRINGS;395
31.1;275. General Properties of Springs;395
31.2;276. Coiled Springs;395
31.3;277. Geometry of Hellcal Springs;396
31.4;278. Close-Coiled Helical Spring: Axial Pull;397
31.5;279. Close-Coiled Helical Spring: Axial Couple;398
31.6;280. Open-Coiled Helical Spring: Axial Force;399
31.7;281. Open-Coiled Helical Spring: Axial Couple;399
31.8;282. Plane Spiral Springs;400
31.9;283. Close-Coiled Conical Spiral Spring;402
31.10;284. Approximate Theory of Leaf Springs;403
32;CHAPTER XXV.
STRESSES IN CURVED BEAMS OF LARGE CURVATURE;407
32.1;285. Introductory;407
32.2;286. Winkler's Theory of the Flexure of Curved Bars;407
32.3;287. Pure Bending;410
32.4;288. Formula! for h2;410
32.5;289. Deformation of the Central Axis;411
32.6;290. Application to Hooks;412
32.7;291. Chain Ring;415
32.8;292. Ring with Stud;417
33;CHAPTER XXVI. GENERAL ANALYSIS OF STRESS AND STRAIN;420
33.1;293. Need for General Analytical Methods;420
33.2;294. Stress Components;420
33.3;295. Stress Equations of Equilibrium;421
33.4;296. Plane Stress with No Body Forces: Cartesian Co-ordinates;423
33.5;297. Plane Stress with No Body Forces: Polar
Co-ordinates;423
33.6;298. Displacements in Cartesian
Co-ordinates;424
33.7;299. Relations between the Strain Components;426
33.8;300. Relations Between the Stresses and Displacements in a Two-Dimensional Stress
System;426
33.9;301. Equations for Finding the Displacements in a Two Dimensional
Stress System;427
33.10;302. Two-Dimensional Strain System;428
33.11;303. Transformation to Polar Co-ordinates;429
34;CHAPTER XXVII.
SOME PROBLEMS IN TWO DIMENSIONS;432
34.1;304. Some Particular Solutions of the General Equation;432
34.2;305. Narrow Cantilever of Rectangular Section with Concentrated Load;434
34.3;306. Narrow Cantilever of Rectangular Section with Uniformly Distributed Load;437
34.4;307. Solution of V4V = 0 in Polar Co-ordinates;437
34.5;308. Thick Hollow Cylinder under Radial Pressures;439
34.6;309. Incomplete Circular
Plate with Terminal Couples;439
34.7;310. Semi-Circular Plate Subjected to Terminal Shearing
Forces;440
35;CHAPTER XXVIII.
THICK CYLINDRICAL AND SPHERICAL SHELLS;446
35.1;311. Thick Cylindrical Shell under Radial Pressures;446
35.2;312. External Pressure
Negligible;448
35.3;313. Longitudinal Stress;451
35.4;314. Compound Tubes;453
35.5;315. Driving Fits on Solid Shafts;457
35.6;316. Purpose of
Wire Winding;458
35.7;317. General Equations;459
35.8;318. Shear Stress, or Stress-Difference (p + t), Limited Throughout;459
35.9;319. Shear Stress Limited in Tube: Tensile Stress Limited
in Windings;461
35.10;320. Wire Winding at Constant Tension;463
35.11;321. Temperature Stresses in Thick Tubes;465
35.12;322. Thick Spherical Shells;469
36;CHAPTER XXIX.
STRESSES DUE TO ROTATION;474
36.1;323. General Equations;474
36.2;324. Rotating Disc of Uniform Thickness;475
36.3;325. Case· 1. Thin Solid Disc;476
36.4;326. Case 2. Thin Hollow Disc;477
36.5;327. Rotating Circular Cylinder;478
36.6;328. Case 1. Solid Cylinder;479
36.7;329. Case 2. Hollow Cylinder;480
36.8;330. Disc of Varying Thickness;482
37;CHAPTER XXX.
THE TORSION OF NON-CIRCULAR SHAFTS;485
37.1;331. Physical Discussion;485
37.2;332. Mathematical Analysis;486
37.3;333. Torsion of Thin Tubes of any Section;488
37.4;334. Solid Sections of Irregular Shape;489
37.5;335. The Torsion of Hollow Shafts of any Section;496
38;CHAPTER XXXI.
STRESSES IN FLAT PLATES DUE TO BENDING;498
38.1;336. Statement of the Problem and Assumptions;498
38.2;337. General Equations;498
38.3;338. General Solution when the Load is Uniform;503
38.4;339. Solid Circular Plate, Uniformly Loaded over the Whole Area: Edge Freely Supported;504
38.5;340. Solid Circular Plate, Uniformly Loaded over the Whole
Area: Edge Clamped;505
38.6;341. Annular Ring Freely Supported at the Outer Edge and
Loaded Uniformly Round the Inner Edge;506
38.7;342. Solid Plate Uniformly Loaded Round a Circle: Edge Freely Supported;507
38.8;343. Solid Plate with Load Concentrated at the Centre;508
38.9;344. Rectangular Plate,
Supported at the Edges;509
39;CHAPTER XXXII.
THE WHIRLING OF SHAFTS;511
39.1;345. Definition of Whirling Speed;511
39.2;346. Unloaded Shaft;511
39.3;347. Single Concentrated Load on a Light Shaft;512
39.4;348. Single Concentrated Load on a Heavy Shaft;513
39.5;349. Shaft Subjected to End Thrust;514
39.6;350. Shaft Subjected to End Thrust and Torque;516
40;CHAPTER XXXIII. TRANSVERSE OSCILLATIONS OF BEAMS DUE TOPULSATING AND TRAVELLING LOADS;520
40.1;351. Introductory;520
40.2;352. Free Oscillations of a Beam Simply Supported at Both Ends;520
40.3;353. Pulsating Sinusoidal Load on Freely Supported Beam;522
40.4;354. Alternating Load Uniformly Distributed on Freely Supported
Beam;525
40.5;355. Single Pulsating Load on Freely Supported Beam;527
40.6;356. Freely Supported Beam Subjected to a Load which Varies
Uniformly with the Time;529
40.7;357. Concentrated Load Advancing over Freely Supported
Girder;530
40.8;358. Uniformly Distributed Load Advancing over Freely Supported
Girder;532
40.9;359. Single Pulsating Load Advancing over Freely Supported
Girder;533
41;CHAPTER XXXIV. ALTERNATING STRESSES AND FATIGUE;537
41.1;360. Introductory;537
41.2;361. Raising the Yield Point by Stress;538
41.3;362. Effects of Time on Recovery of Elasticity;538
41.4;363. Recovery of Elasticity with Moderate
Heat;539
41.5;364. Primitive and Natural Elastic Limits;539
41.6;365. Hysteresis;541
41.7;366. Fatigue Range;542
41.8;367. Theory of Fatigue, Hysteresis, etc;545
42;APPENDIX:
TABLE OF ELASTIC CONSTANTS;551
43;ANSWERS TO EXAMPLES;553
44;INDEX;558



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.