E-Book, Englisch, 574 Seiten, Web PDF
Case The Strength of Materials
2. Auflage 2014
ISBN: 978-1-4832-2155-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Treatise on the Theory of Stress Calculations for Engineers
E-Book, Englisch, 574 Seiten, Web PDF
ISBN: 978-1-4832-2155-7
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
The Strength of Materials
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover
;1
2;The Strength of Materials: A Treatise on the Theory of Stress Calculations for Engineers;2
3;Copyright Page
;3
4;Table of Contents;8
5;Dedication
;4
6;PREFACE TO FIRST EDITION;6
7;PREFACE TO SECOND EDITION;7
8;CHAPTER I.
DIRECT STRESSES;10
8.1;1. The Purpose of the Theory of Stresses;10
8.2;2. Definitions of Load and Stress;10
8.3;3. Measurement of Stress;11
8.4;4. Strain;12
8.5;5. Measurement of Strain in Tension and Compression;12
8.6;6. Hooke's Law;12
8.7;7. Young's Modulus;13
8.8;8. Stress-Strain Diagrams;14
8.9;9. Magnitudes of Stresses and Strains;16
8.10;10. Limitations and Scope of Mathematical Theory;16
8.11;11. Factor of Safety and Working Stress;17
8.12;12. Fluctuating Stresse;18
8.13;13. Principle of St. Venant;19
8.14;14. Initial Stresses;20
8.15;15. Rods of Varying Section, and Distributed Axial Loads;21
8.16;16. Composite Bars in Tension or Compression;23
8.17;17. Adhesion Stress in Reinforced Concrete;24
8.18;18. Temperature Stresses;25
8.19;19. Temperature Stresses in Composite Rods;26
8.20;20. Abrupt Changes of Section;27
8.21;21. Work Done During Tension and Compression;28
8.22;22. Resilience;29
8.23;23. Stress Due to Sudden Application of Load;29
8.24;24. Waves of Stress;30
8.25;25. Velocity of Propagation of Stress in a Straight Rod;31
8.26;26. Maximum Stress;32
8.27;27. Stress in a Rotating Ring;34
8.28;28. Poisson's Ratio;35
8.29;29. Strain Due to Two Stresses at Right Angles;36
8.30;30. Change of Area and Volume Due to Strain;37
8.31;31. Bulk Modulus;37
8.32;32. Relation between E and K;37
8.33;33. Modified Values of E when Lateral Strain is Prevented;38
9;CHAPTER II. DISPLACEMENT DIAGRAMS AND REDUNDANT FRAMES;43
9.1;34. Displacement Diagrams;43
9.2;35. Application of the Principle of Virtual Work;46
9.3;36. Simply-stiff and Redundant Frames;47
9.4;37. Conditions for Simple Stiffness;47
9.5;38. Self-strained Frameworks;48
9.6;39. Stresses in Redundant Frames;48
9.7;40. Strain Energy of a Framework;49
9.8;41. Theorem Relating to the Strain Energy of a Framework;49
9.9;42. Second Theorem Relating to the Strain Energy of a Frame;51
9.10;43. The Theorem of Least Work for a Framework which is not Self-strained;52
9.11;44. Method of Calculating Stresses in Redundant Frames
which are not Self-strained;53
9.12;45. Frameworks which are
Self-strained;56
9.13;46. Alternative Method: Use of Displacement Diagrams;56
10;CHAPTER III.
SHEARING STRESSES;63
10.1;47. Shearing Stress;63
10.2;48. Complementary Shear Stresses;65
10.3;49. The Shearing Stresses on a Cross Section must always Actin Directions Tangential to the Boundary;67
10.4;50. Measurement of Shear Stress;67
10.5;51. Shear Strain;69
10.6;52. Modulus of Rigidity;69
10.7;53. Strain Energy due to Shear;70
11;CHAPTER IV.
RIVETED JOINTS;72
11.1;54.
Introductory;72
11.2;55. Possible Types of Failure of Simple Riveted Joints,
Neglecting Friction;73
11.3;56. Group-Riveted Joints;76
11.4;57. Eccentric Loads;77
12;CHAPTER V. ANALYSIS OF STRESS AND STRAIN. COMPOUND STRESSES: ANALYSIS OF STRESS;81
12.1;58. Introductory;81
12.2;59. Stress-components on any Plane due to a Direct Stresson a Given Plane;81
12.3;60. Stress-components on any Plane due to a Shearing Stress
on a Given Plane;82
12.4;61. General Two-dimensional Stress System;83
12.5;62. Stress-components on any Plane in a General Two-dimensional
Stress-system;84
12.6;63. Principal Planes;84
12.7;64. To Find the Principal Stresses;85
12.8;65. The Principal Stresses Found from First Principles;85
12.9;66. Maxi-mum Shear Stresses;86
12.10;67. Strain in any Direction due to Strain in a Given Direction;87
12.11;68. To Find the Direct Strain in Any Direction due to a Given
Shear Strain;88
12.12;69. General Two-Dimensional Strain;88
12.13;70. Maximum Shear Strain;89
12.14;71. Principal Strains
;90
12.15;72. Single Direct Stress Required to Produce same Maximum
Strain as a Given Stress System;90
12.16;73. Relations Between E, C, K and m;91
12.17;74. Strain Energy of Combined Stresses;92
12.18;75. Principal Stresses in Three-Dimensional System;92
12.19;76. Strains in Three-Dimensional Stress System;92
12.20;77. Strain Energy in Three Dimensions;93
13;CHAPTER VI.
FAILURE OF MATERIALS UNDER COMPOUND STRESSES;95
13.1;78. Introductory;95
13.2;79. The Various Theories of Failure;96
13.3;80. The Significance of these Theories;97
13.4;81. Representation of the above Theories;98
13.5;82. Analysis of Experiments;101
14;CHAPTER VII. THIN CYLINDRICAL AND SPHERICAL SHELLS UNDER
INTERNAL PRESSURE;106
14.1;83. Introductory;106
14.2;84. Thin Cylindrical Shell of Circular Section;106
14.3;85. Thin Spherical Shell under Internal Pressure;107
14.4;86. Thin Cylindrical Shell with Hemispherical Ends;108
14.5;87. Thin Tube under External Pressure;110
15;CHAPTER VIII.
THE TORSION OF CIRCULAR SHAFTS;113
15.1;88. Introductory;113
15.2;89. Relations between Twisting Moment, Twist and Shear Stress;113
15.3;90. Principal Stresses in a Twisted Shaft;115
15.4;91. Torsion Combined with Thrust or Tension;118
15.5;92. Strain Energy of Torsion;119
15.6;93. Keyways and Serrations;120
16;CHAPTER IX.
BENDING MOMENTS AND SHEARING FORCES DUE TOSTEADY LOADS;123
16.1;94. Bending Moments and Shearing Forces Deftned;123
16.2;95. Concentrated and Distributed Loads;124
16.3;96. Relation between Load, Shearing Force and Bending Moment;125
16.4;97. Cantilever with Concentrated Load;127
16.5;98. Cantilever with Uniformly Distributed Load;127
16.6;99. Cantilever with Non-uniformly Distributed Load;128
16.7;100. Cantilever with any Manner of Loads;129
16.8;101. Freely Supported Beam with Concentrated Load;131
16.9;102. Freely Supported Beam with Uniformly Distributed Load;133
16.10;103. FreelY' Supported Beam with Non-uniformly Distributed
Load;134
16.11;104. Another Graphical Method of Drawing Bending-Moment
Diagrams;135
16.12;105. Freely Supported Beam with Couples applied to Both Ends;137
16.13;106. Freely Supported Beam with Couple applied Between
the Supports;137
16.14;107. Beam Freely Supported at each End, carrying a Uniformly Distributed Load, acted on by Couples at both Ends;138
16.15;108. Freely Supported Beam with Uniformly Distributed Loadover Part of the Length;140
16.16;108a. Useful General Method for Drawing Bending Moment Diagrams;141
17;CHAPTER X. BENDING MOMENTS AND SHEARING FORCES DUE TO
TRAVELLING LOADS;151
17.1;109. Introductory;151
17.2;110. A Single Concentrated Load Crossing a Bearn;151
17.3;111. Uniformly Distributed Travelling Load of Sufficient Length to Cover the Whole Span;153
17.4;112. Two Concentrated Loads;154
17.5;113. Several Concentrated Loads;158
17.6;114. Influence Lines;161
17.7;115. Single Concentrated Load;161
17.8;116. Uniformly Distributed Load;162
18;CHAPTER XI.
LONGITUDINAL STRESSES IN BEAMS;164
18.1;117. Physical
Discussion;164
18.2;118. The Theory of Uniform Bending;166
18.3;119. Modulus of Section;169
18.4;120. Application to Practical Cases of Bending;169
18.5;121. Moment of Resistance of Section;169
18.6;122. Beams having Initial Curvature;170
18.7;123. Beams made of Materials having Different Strengths in Tension and Compression;170
18.8;124. Reinforced Concrete;173
18.9;125. reinforced Concrete Beam of Rectangular Section;175
18.10;126. Oblique, or Unsymmetrical Bendin;179
18.11;127. Geometrically Similar Beams;182
18.12;128. Strain Energy Due to Normal Stresses;183
18.13;129. Change of Cross Section in Uniform Bending;183
18.14;130. Secondary Stresses in Beams;184
18.15;131. General Properties of Moments of Inertia;185
18.16;132. Given the Moments of Inertia about the Principal Axes, to Find the Moments of Inertia about any other Line through the Centroid of the Area;185
18.17;133. To Find the Principal Moments of Inertia;186
18.18;134. Ellipse of Inertia, or Momental
Ellipse;187
18.19;135. Given the Moment of Inertia about an Axis through the Centroid of an Area, to Find the Moment of Inertia about any
other Parallel Axis;187
18.20;136. Graphical Determination of Moment of Inertia of an
Irregular Section;188
18.21;137. Table of Moments of Inertia;188
18.22;138. Note on J
Sections;190
19;CHAPTER XII.
BENDING STRESSES AND DIRECT STRESSES COMBINED;195
19.1;139. Introductory;195
19.2;1404.
Stress Due to Combined Bending and Thrust;195
19.3;141. Eccentric End Load;197
19.4;142. Circular Section;197
19.5;143. Rectangular Section;198
19.6;144. Unsymmetrical Bending with Eccentric End Load;198
19.7;145. Core of Rectangular Section;198
19.8;146. Bending and Axial Thrust: No Tensile Stresses;201
19.9;147. Bending and Axial Thrust: When there are Tensile Stresses;203
19.10;148. Bending and Axial Tension Combined;205
20;CHAPTER XIII.
SHEARING STRESSES IN BEAMS;209
20.1;149. Introductory;209
20.2;150. Elementary Treatment of the Distribution of Shearing Stress;209
20.3;151. Special Cases; Beams of Constant Section;211
20.4;152. Shear in Built-up Plate Girders;215
20.5;153. General Remarks on Shearing Stresses in Beam;215
20.6;154. Principal Stresses in Beams;216
20.7;155. Superimposed Beams;219
20.8;156. Shear in Reinforced Concrete Beams;220
20.9;157. Shear in Oblique Bending;222
21;CHAPTER XIV.
THE DEFLECTION OF BEAMS;225
21.1;158. Introductory;225
21.2;159. General Equations;225
21.3;160. Reinforced Concrete Beams;228
21.4;161. Cantilever with Concentrated Load;228
21.5;162. Cantilever with Uniformly Distributed Load;229
21.6;163. Supported Cantilever with Distributed Load;229
21.7;164. Beam with Uniform Bending Moment;232
21.8;165. Beam Simply Supported at the Ends and carrying a
Uniformly Distributed Load;233
21.9;166. Freely Supported Beam with Concentrated Load;234
21.10;167. Rules for applying Macaulay's Method;235
21.11;168. Freely Supported Beam with Distributed Load over a
Portion of the Span;236
21.12;169. Beam Supported at Each End, with a Couple Applied at
an Intermediate Point;237
21.13;170. Beam with Terminal Couples and Distributed Load;240
21.14;171. Relative Movement of Supports;241
21.15;172. Beams with Non-Uniformly Distributed Load: Graphical Treatment;241
21.16;173. Simply Supported Beam;242
21.17;174. Cantilever with Irregular Load;244
21.18;175. Beams of Varying Section;245
21.19;176. Non-Uniformly Distributed Load and Terminal Couples:
Expressions for the Slopes;248
21.20;177. Non-Uniformly Distributed Load and Terminal Couples, with Varying Cross Section;249
21.21;178. Beam Acted on by Terminal Couples and Carrying a Concentrated Load;250
21.22;179. Introductory;251
21.23;180. Freely Supported Beam with Sinusoidal Distribution of
Load;251
21.24;181. Freely Supported Beam with Uniformly Distributed Load;252
21.25;182. Freely Supported Beam with Concentrated Load;252
21.26;183. Introductory;253
21.27;184. Cantilever of Uniform Rectangular Section with Concentrated Load at the End;253
21.28;185. Cantilever with Uniformly Distributed Load;254
22;CHAPTER XV. BUILT IN, OR ENCASTRÉ, BEAMS;258
22.1;186. Introductory;258
22.2;187. Encastré
Beam with Uniformly Distributed Load;259
22.3;188. Encastré
Beam with Single Concentrated Load;259
22.4;189. Encastré Beam with Irregular
Loading;260
22.5;190. Varying Section;261
22.6;191. Disadvantages of Built-in Beams;261
22.7;192. Effect of Sinking of Supports;262
23;CHAPTER XVI.
CONTINUOUS BEAMS;266
23.1;193. Fixing Moments at the Supports;266
23.2;194. Theorem of Three Moments for Uniformly Distributed Load;266
23.3;195. Theorem of Three Moments for Concentrated Loads;268
23.4;196. Theorem of Three Moments for Irregular
Loading;274
23.5;197. Irregular Loading and Varying Section;275
23.6;198. Disadvantages of Continuous Beam;275
23.7;199. Hinged Joints in the Spans;275
23.8;200. General Equations;277
23.9;201. Single Load at the Centre of a Long Beam;278
24;CHAPTER XVII.
RIGID ARCHES;281
24.1;202. General Discussion;281
24.2;203. Arch Hinged only at the Abutments;282
24.3;204. Arch Built-in at Both Ends;283
24.4;205. Deflection of Arched Ribs;284
24.5;206. Temperature Stresses;286
24.6;207. Two-hinged Parabolic Arch with Uniformly Distributed
Load;289
24.7;208. Two-hinged Parabolic Arch with Concentrated Load;290
24.8;209. Built-in Parabolic Arch with Uniformly Distributed Load;291
24.9;210. Built-in Parabolic Arch with Concentrated Load;291
24.10;211. Piston Rings;292
25;CHAPTER XVIII.
STRUTS OF UNIFORM SECTION;297
25.1;212. Statement of the Problem;297
25.2;213. Strut Pin-jointed at Both Ends;297
25.3;214. Limitations of Euler's Formula;299
25.4;215. Strut with Eccentric End-Load;301
25.5;216. The Effect of Initial Crookedness;304
25.6;217. Strut with One End Encastre, the other End being Freeto Rotate;306
25.7;218. Strut with One End Encastré,
the Other End being Freeto take up any Position;307
25.8;219. Strut with Both Ends
Encastré;308
25.9;220. The Imperfections of Real Struts;309
25.10;221. Eccentricity of Loading;310
25.11;222. Initial Curvature;310
25.12;223. Equivalent Eccentricity;311
25.13;224. Reduction in Strength;311
25.14;225. End Conditions;312
25.15;226. Range of the Euler Formula;312
25.16;227. Empirical
Formulmæ;314
25.17;228. The Rankine-Gordon Formula;315
25.18;229. Straight Line
Formulræ;316
25.19;230. Johnson's Parabolic Formula;317
25.20;231. Fidler's Formula;318
25.21;232. Perry's Formula;318
25.22;233. Robertson's Formula;318
25.23;234. Author's Formula;318
25.24;235. Stress Determining Strut Failure;319
25.25;236. Factors of Safety for Struts;319
25.26;237. Shearing Forces in Struts;320
25.27;238. Braced Struts;322
25.28;239. Equivalent Eccentricity;327
25.29;240. Crinkling;327
25.30;241. Short Struts where Bending is Negligible;330
25.31;242. Long Struts;331
26;CHAPTER XIX.
TAPERED STRUTS;337
26.1;243. Introductory;337
26.2;244. General Equations;337
26.3;245. Solid Strut of Uniform Stress;340
26.4;246. Tapered Hollow Struts of Uniform Thickness;344
26.5;247. Elliptically Tapered Struts;347
26.6;248. Rules for Design of Straight-Taper Struts;348
26.7;249. To Find the Failing Load of a Solid Strut of Given
Shape;349
26.8;250. To Find the Euler Crippling Load of a Strut Symmetrical
about the Central Section;349
27;CHAPTER XX. BEAMB UNDER LATERAL AND LONGITUDINAL LOADS
COMBINED;352
27.1;251. Deflection Due to Lateral Loads Influenced by End Loads;352
27.2;252. Deem Supported at Each End, Carrying a Uniformly Distributed Transverse Load, and
End Thrus;352
27.3;253. Beam Supported at Each End, Loaded with a Uniformly Distributed Lateral Load, Terminal Couples and End Thrust;355
27.4;254. Approximate
Formulmæ;358
27.5;255. Continuous Beams with Longitudinal Forces and Lateral Loads;359
28;CHAPTER XXI. FRAMEWORKS WITH STIFF JOINTS;365
28.1;256. Nature of the Problem;365
28.2;257. Rectangular Portal;365
28.3;258. Secondary Stresses in Trianaulated Frameworks;368
28.4;259. Secondary Stresses Due to Rigid Joints;369
28.5;260. Effects of Lateral Loads;373
28.6;261. Effects of End Loads;373
29;CHAPTER XXII.
BENDING COMBINED WITH TORSION AND THRUST;377
29.1;262. Introductory;377
29.2;263. Torsion Combined with Pure Bending;377
30;XXIII. Stability of Bent and Twisted Rods;384
30.1;268. Non-Circular Rods;385
30.2;269. Stability of Thin Deep Cantilever with Concentrated Load;386
30.3;270. Thin Deep Cantilever with
Distributed Load;388
30.4;271. Thin Deep Beam under Constant Bending Moment;389
30.5;272. The Case of
I-Beams;390
30.6;273. Uniform Bending Moment;391
30.7;274. Other Cases;391
31;CHAPTER XXIV.
SPRINGS;395
31.1;275. General Properties of Springs;395
31.2;276. Coiled Springs;395
31.3;277. Geometry of Hellcal Springs;396
31.4;278. Close-Coiled Helical Spring: Axial Pull;397
31.5;279. Close-Coiled Helical Spring: Axial Couple;398
31.6;280. Open-Coiled Helical Spring: Axial Force;399
31.7;281. Open-Coiled Helical Spring: Axial Couple;399
31.8;282. Plane Spiral Springs;400
31.9;283. Close-Coiled Conical Spiral Spring;402
31.10;284. Approximate Theory of Leaf Springs;403
32;CHAPTER XXV.
STRESSES IN CURVED BEAMS OF LARGE CURVATURE;407
32.1;285. Introductory;407
32.2;286. Winkler's Theory of the Flexure of Curved Bars;407
32.3;287. Pure Bending;410
32.4;288. Formula! for h2;410
32.5;289. Deformation of the Central Axis;411
32.6;290. Application to Hooks;412
32.7;291. Chain Ring;415
32.8;292. Ring with Stud;417
33;CHAPTER XXVI. GENERAL ANALYSIS OF STRESS AND STRAIN;420
33.1;293. Need for General Analytical Methods;420
33.2;294. Stress Components;420
33.3;295. Stress Equations of Equilibrium;421
33.4;296. Plane Stress with No Body Forces: Cartesian Co-ordinates;423
33.5;297. Plane Stress with No Body Forces: Polar
Co-ordinates;423
33.6;298. Displacements in Cartesian
Co-ordinates;424
33.7;299. Relations between the Strain Components;426
33.8;300. Relations Between the Stresses and Displacements in a Two-Dimensional Stress
System;426
33.9;301. Equations for Finding the Displacements in a Two Dimensional
Stress System;427
33.10;302. Two-Dimensional Strain System;428
33.11;303. Transformation to Polar Co-ordinates;429
34;CHAPTER XXVII.
SOME PROBLEMS IN TWO DIMENSIONS;432
34.1;304. Some Particular Solutions of the General Equation;432
34.2;305. Narrow Cantilever of Rectangular Section with Concentrated Load;434
34.3;306. Narrow Cantilever of Rectangular Section with Uniformly Distributed Load;437
34.4;307. Solution of V4V = 0 in Polar Co-ordinates;437
34.5;308. Thick Hollow Cylinder under Radial Pressures;439
34.6;309. Incomplete Circular
Plate with Terminal Couples;439
34.7;310. Semi-Circular Plate Subjected to Terminal Shearing
Forces;440
35;CHAPTER XXVIII.
THICK CYLINDRICAL AND SPHERICAL SHELLS;446
35.1;311. Thick Cylindrical Shell under Radial Pressures;446
35.2;312. External Pressure
Negligible;448
35.3;313. Longitudinal Stress;451
35.4;314. Compound Tubes;453
35.5;315. Driving Fits on Solid Shafts;457
35.6;316. Purpose of
Wire Winding;458
35.7;317. General Equations;459
35.8;318. Shear Stress, or Stress-Difference (p + t), Limited Throughout;459
35.9;319. Shear Stress Limited in Tube: Tensile Stress Limited
in Windings;461
35.10;320. Wire Winding at Constant Tension;463
35.11;321. Temperature Stresses in Thick Tubes;465
35.12;322. Thick Spherical Shells;469
36;CHAPTER XXIX.
STRESSES DUE TO ROTATION;474
36.1;323. General Equations;474
36.2;324. Rotating Disc of Uniform Thickness;475
36.3;325. Case· 1. Thin Solid Disc;476
36.4;326. Case 2. Thin Hollow Disc;477
36.5;327. Rotating Circular Cylinder;478
36.6;328. Case 1. Solid Cylinder;479
36.7;329. Case 2. Hollow Cylinder;480
36.8;330. Disc of Varying Thickness;482
37;CHAPTER XXX.
THE TORSION OF NON-CIRCULAR SHAFTS;485
37.1;331. Physical Discussion;485
37.2;332. Mathematical Analysis;486
37.3;333. Torsion of Thin Tubes of any Section;488
37.4;334. Solid Sections of Irregular Shape;489
37.5;335. The Torsion of Hollow Shafts of any Section;496
38;CHAPTER XXXI.
STRESSES IN FLAT PLATES DUE TO BENDING;498
38.1;336. Statement of the Problem and Assumptions;498
38.2;337. General Equations;498
38.3;338. General Solution when the Load is Uniform;503
38.4;339. Solid Circular Plate, Uniformly Loaded over the Whole Area: Edge Freely Supported;504
38.5;340. Solid Circular Plate, Uniformly Loaded over the Whole
Area: Edge Clamped;505
38.6;341. Annular Ring Freely Supported at the Outer Edge and
Loaded Uniformly Round the Inner Edge;506
38.7;342. Solid Plate Uniformly Loaded Round a Circle: Edge Freely Supported;507
38.8;343. Solid Plate with Load Concentrated at the Centre;508
38.9;344. Rectangular Plate,
Supported at the Edges;509
39;CHAPTER XXXII.
THE WHIRLING OF SHAFTS;511
39.1;345. Definition of Whirling Speed;511
39.2;346. Unloaded Shaft;511
39.3;347. Single Concentrated Load on a Light Shaft;512
39.4;348. Single Concentrated Load on a Heavy Shaft;513
39.5;349. Shaft Subjected to End Thrust;514
39.6;350. Shaft Subjected to End Thrust and Torque;516
40;CHAPTER XXXIII. TRANSVERSE OSCILLATIONS OF BEAMS DUE TOPULSATING AND TRAVELLING LOADS;520
40.1;351. Introductory;520
40.2;352. Free Oscillations of a Beam Simply Supported at Both Ends;520
40.3;353. Pulsating Sinusoidal Load on Freely Supported Beam;522
40.4;354. Alternating Load Uniformly Distributed on Freely Supported
Beam;525
40.5;355. Single Pulsating Load on Freely Supported Beam;527
40.6;356. Freely Supported Beam Subjected to a Load which Varies
Uniformly with the Time;529
40.7;357. Concentrated Load Advancing over Freely Supported
Girder;530
40.8;358. Uniformly Distributed Load Advancing over Freely Supported
Girder;532
40.9;359. Single Pulsating Load Advancing over Freely Supported
Girder;533
41;CHAPTER XXXIV. ALTERNATING STRESSES AND FATIGUE;537
41.1;360. Introductory;537
41.2;361. Raising the Yield Point by Stress;538
41.3;362. Effects of Time on Recovery of Elasticity;538
41.4;363. Recovery of Elasticity with Moderate
Heat;539
41.5;364. Primitive and Natural Elastic Limits;539
41.6;365. Hysteresis;541
41.7;366. Fatigue Range;542
41.8;367. Theory of Fatigue, Hysteresis, etc;545
42;APPENDIX:
TABLE OF ELASTIC CONSTANTS;551
43;ANSWERS TO EXAMPLES;553
44;INDEX;558