Castelli | Nuclear Corrosion Modeling | E-Book | sack.de
E-Book

E-Book, Englisch, 216 Seiten

Castelli Nuclear Corrosion Modeling

The Nature of CRUD
1. Auflage 2009
ISBN: 978-1-85617-934-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

The Nature of CRUD

E-Book, Englisch, 216 Seiten

ISBN: 978-1-85617-934-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Corrosion in nuclear power plants cause reductions in efficiency and increases in deposit build-up on plant surfaces, making for expensive maintentance and potential radiological health hazards. This book guides studies to predict and minimize corrosion, thus making nuclear power safer and more cost effective. Too often, reliance on empirical models and on-site testing of existing plants makes study and prediction of corrosive effects in nuclear reactors into a pricey and lengthy process. Introducing the experimental procedures, set up, sample preparation and computer modeling suggested in this book will save precious time and resources in a field where the significant time and expense to get and keep plants on-line are two of the chief concerns preventing broader commerical viability.
* The only book to focus exclusively on preventing nuclear corrosion
* Uses computer modelling to tie together chemical engineering, civil engineering, corrosion science, and nuclear engineering into a cohesive solution to a vexing nucelar problem
* Includes all fundamental equations, example data sets and experimental techniques

Castelli Nuclear Corrosion Modeling jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Nuclear corrosionModeling;4
3;Coyright Page;5
4;Contents;6
5;Preface;12
6;Introduction;14
6.1;1. Why Do We Care?;14
6.2;2.. Bounding the Discussion;14
6.2.1;The Reactor;15
6.2.2;Materials of Construction;15
6.2.3;pH Control Agents and Coolant Additives;16
6.2.4;Clarifying the Definition;16
6.3;3. The Analytical Domain;17
7;Chapter 1: The Corrosion Source;20
7.1;1. The Process;20
7.2;2. The Form;21
7.3;3. Why a Double-Layered Film?;22
7.4;4. Ion Site Preference;24
7.5;5. Kinetics;26
7.5.1;Modeling the Behavior;26
7.5.2;A Closer Look at kp;28
7.5.2.1;Temperature;28
7.5.2.2;Zinc in the Aqueous Phase;29
7.5.2.3;Surface Condition;30
7.5.2.4;The Experimental Technique;32
7.5.3;Elemental Speciation of kp and kr;39
7.5.3.1;Computation of the Actual kr;39
7.5.3.2;Elemental Speciation;40
7.5.3.3;Adjusting Kinetics for the Presence of Zinc;41
7.6;6. The Cobalt Source;41
7.6.1;Tramp Cobalt in Construction Material;42
7.6.2;High Cobalt Content Alloys;43
7.6.2.1;Stellite;44
7.6.2.2;The Cobalt Source Mechanism;46
7.6.2.3;Modeling the Cobalt Source;48
7.7;7. A Place to Start;49
8;Chapter 2: Framing the Vision of the General Equation Set;52
8.1;1. Mass Balances;53
8.2;2. Physicochemical Processes;54
8.3;3. Nuclear Processes;54
8.4;4. Dependent Variables;58
8.5;5. Modeling Coolant Additives and pH Control Agents;58
9;Chapter 3: Building Block Fluxes for the General Equation Set;62
9.1;1. Corrosion Growth and Release;63
9.2;2. Particulate Deposition and Erosion;64
9.2.1;Water Purity;67
9.2.2;Practical Measurements of kdp and ke;67
9.3;3. Hydrothermal Crystallization/Dissolution;69
9.3.1;Saturated or Equilibrium Coolant Concentrations;70
9.3.2;Vanishing Dependent Variables;73
9.3.3;Parsing the Hydrothermal Mass Transfer;74
9.3.4;Modeling of Boiling Phenomena;75
9.3.4.1;Boiling Enhanced Hydrothermal Crystallization;76
9.3.4.2;Boiling Enhanced Particulate Deposition;77
9.4;4. Hydrothermal Particulate Crystallization/Dissolution;77
9.4.1;Saturation Enhancement Factor;78
9.4.2;Hydrothermal Particulate Mass Transfer Coefficient;80
9.5;5. Building Block Models for Radioactive Buildup and Decay;81
9.5.1;Effective Thermal Neutron Production Cross Sections;81
10;Chapter 4: The General Equation Set;84
10.1;1. Chromite Sublayer Equations;85
10.1.1;Iron- and Nickel-Based Alloys;85
10.1.2;Stellite;85
10.1.3;Zircaloy;85
10.1.4;Discussion;85
10.2;2. Ferrite Layer Equations;86
10.2.1;Discussion;87
10.3;3. Particulate Aqueous Phase Equations;87
10.3.1;Discussion;88
10.4;4. Aqueous Soluble Phase Equations;88
10.4.1;Iron- and Nickel-Based Alloy Soluble Equations;88
10.4.2;Zircaloy Base Metal Soluble Equations;89
10.4.3;Stellite Base Metal Soluble Equations;90
10.4.4;Discussion;90
11;Chapter 5: Framing the Vision of the Media Equation Set;92
11.1;1. Reactor Coolant Purification Systems;92
11.2;2. Modeling Media;93
11.2.1;Filtration Building Block Model;94
11.2.1.1;Discussion;95
11.2.1.2;Modeling lambdaf and beta;96
11.2.1.3;A Simpler Approach;97
11.2.2;Ion-Exchange Building Block Model;99
11.2.2.1;Discussion;100
12;Chapter 6: The Media Equation Set;104
12.1;1. Media Ionic Subsurface Equations (Ion Exchangers Only);105
12.1.1;Discussion;105
12.2;2. Media Surface Phase (Filtered Mass) Equations;106
12.2.1;Discussion;106
12.3;3. Media Particulate Equations;106
12.3.1;Discussion;107
12.4;4. Media Soluble Equations;108
12.4.1;Discussion;109
13;Chapter 7: A Solution Method;110
13.1;1. Linearizing the Equation Sets;111
13.2;2. Finite Differencing;113
13.2.1;General Equations for Iron in Iron- and Nickel-Based Alloys;114
13.2.2;Simplified Linearized Iron Equations;115
13.2.2.1;Discussion;115
13.2.3;How Does Finite Differencing Work?;117
13.2.4;Defining Y(n) and b(n, m);119
13.3;3. Subordinate or Secondary Models and Correlations;123
13.3.1;FORTRAN or C Algorithms for the Thermodynamic Properties of Steam and Water;124
13.3.2;Computation of pH (Log of the H+ Ion Concentration);124
13.3.3;Single-Phase Hydraulic Friction Factor;124
14;Chapter 8: Defining the Input Architecture for NOC;126
14.1;1. System Defaults and Program Control Inputs;126
14.1.1;Finite Difference Mesh;127
14.2;2. Time-Independent Part (or Region) Inputs;129
14.3;3. Operating History Histogram Inputs;133
14.3.1;The Modeling of Time;134
14.4;4. Time-Dependent Inputs;135
14.4.1;Time-Dependent Loop Connection Table Inputs;136
14.4.2;Time-Dependent Part Inputs;136
14.4.2.1;Nuclear Inputs and Power Shapes;138
14.5;5. Program Design and Suggestions;139
15;Chapter 9: Program Architecture;142
15.1;1. Input Module;142
15.1.1;Full Input Processing;143
15.1.1.1;Input Prescanning;143
15.1.1.2;Full Input Summary Edits;145
15.1.1.3;Automesh Generation;146
15.1.1.4;Initial Dependent Variable Boundary Conditions;148
15.1.2;Restart Input Processing;150
15.1.2.1;The Restart File Structure;151
15.2;2. Analysis Module;154
15.2.1;Loop 1-Operating Steps;154
15.2.1.1;Keeping Track of Time;156
15.2.2;Loop 2-Temporal Power Rows;157
15.2.3;Loop 3-Descending the Loop Connection Table;157
15.2.4;Loop 4-The Innermost Loop over Mesh Cells;158
15.2.4.1;Dynamic Solution Repair;159
15.2.4.2;Consider a Freezing Strategy;160
15.2.5;Row Convergence;161
15.2.5.1;A Word about Convergence;161
15.2.6;Preserving the Mass Balance;162
15.2.7;Partial Row Rebalance;164
15.2.7.1;Oscillatory Solutions;165
15.2.7.2;Special Case Mass Rebalance;169
15.2.8;Wrapping Up the Problem;171
15.2.8.1;Summary Tables;171
15.3;3. Output Module;172
15.4;4. Summary;173
16;Chapter 10: Pre- and Postprocessing (the GUI Interface);176
16.1;1. Postprocessing Functionality;177
16.1.1;Special Solution Edits;178
16.1.2;Simulation Graphical Trends;179
16.2;2. Summary;179
17;Chapter 11: Design Applications;182
17.1;1. Optimizing a Coolant Purification System;182
17.2;2. Designing a More Effective Purification System;185
17.2.1;How Does One Model an Absolute Filter?;187
17.2.2;What Can Be Learned by Simulation Testing of This Design?;187
17.3;3. Selecting New Structural Materials;188
18;Afterword;192
19;Appendix;194
19.1;Nickel Equilibria;194
19.2;Cobalt Equilibria;194
19.3;Zinc Equilibria;194
20;Nomenclature;196
20.1;Dependent variables;196
20.2;Subscripts relating to dependent variables;196
20.3;Superscripts relating to dependent variables;196
20.4;Steam table and related hydraulic quantities;196
20.5;Nuclear quantities;197
20.6;Dimensionless numbers;197
21;Glossary;198
22;References;200
23;About the Author;202
24;Index;204



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.