Buch, Englisch, 105 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 385 g
Buch, Englisch, 105 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 385 g
Reihe: Synthesis Lectures on Human Language Technologies
ISBN: 978-3-031-72046-8
Verlag: Springer Nature Switzerland
This book provides a practical guide on annotating emotions in natural language data and showcases how these annotations can improve Natural Language Processing (NLP) and Natural Language Understanding (NLU) models and applications. The author presents an introduction to emotion as well as the ethical considerations on emotion annotation. State-of-the-art approaches to emotion annotation in NLP and NLU including rule-based, machine learning, and deep learning applications are addressed. Theoretical foundations of emotion and the implication on emotion annotation are discussed along with the current challenges and limitations in emotion annotation. This book is appropriate for researchers and practitioners in the field of NLP and NLU and anyone interested in the intersection of natural language and emotion.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik Mathematik Stochastik
- Mathematik | Informatik EDV | Informatik Informatik Natürliche Sprachen & Maschinelle Übersetzung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
Introduction.- Theoretical Foundations and Detection of Emotions.- Rule-Based Approaches for Emotion Detection.- Machine Learning Approaches to Emotion Detection.- Challenges and Limitations in Emotion Detection Methods.