Chakraborty / Kumar Pani / Barbosa | Cognitive and Meta Learning Strategies in Biomedical Research and Healthcare | Buch | 978-0-443-40379-8 | www.sack.de

Buch, Englisch, 500 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 450 g

Chakraborty / Kumar Pani / Barbosa

Cognitive and Meta Learning Strategies in Biomedical Research and Healthcare


Erscheinungsjahr 2026
ISBN: 978-0-443-40379-8
Verlag: Elsevier Science

Buch, Englisch, 500 Seiten, Format (B × H): 152 mm x 229 mm, Gewicht: 450 g

ISBN: 978-0-443-40379-8
Verlag: Elsevier Science


Cognitive and Meta Learning Strategies in Biomedical Research and Healthcare examines the dynamic intersection of cognitive science and meta-learning within the realm of biomedical research. It addresses how to overcome the complexities of contemporary health challenges by harnessing the power of advanced learning methodologies, such as cognitive processes and meta learning.

Chakraborty / Kumar Pani / Barbosa Cognitive and Meta Learning Strategies in Biomedical Research and Healthcare jetzt bestellen!

Weitere Infos & Material


1. Smartphone-based Human Activity Recognition for Healthcare Service with Meta Learning
2. Cognitive Meta Learning-Based AI Models for Improved Detection of Neuropathology
3. Revolutionising Brain Tumour Detection: Integrating AI and Machine Learning for Enhanced Diagnostic Accuracy and Healthcare Efficiency
4. Integrating meta-learning into Biomedical Diagnostics
5. Meta Reinforcement Learning in Health Informatics: A Meta Reinforcement Learning Framework for Blood Glucose Level Control in Type 1 Diabetes
6. Cognitive Meta-Learning Techniques for Uncovering Hidden Patterns in protein Information: A Gender-Based Analysis of Undergraduate Biochemistry Students in Pakistan
7. Hip Exoskeleton Controller Design: A Comprehensive Review for People with Leg Deformities
8. Explainable AI for Epileptic Neonatal EEG Classification
9. An AI-enabled Meta Learning Approach towards Prediction of Cardiological Disorders in Healthcare Sector
10. Cognitive Meta Learning-based AI models for Multimodal Signals
11. Cognitive Meta-Learning Techniques for Uncovering Hidden Patterns in Biomedical Information
12. A Cognitive Learning Approach for Severity Classification of Diabetic Retinopathy Using Voting Based Selection of Deep Models
13. Challenges and Mitigating Strategies for AI based Meta Learning with Multimodal signals
14. Revolutionizing Healthcare with the Cognitive Internet of Medical Things: AI-Driven Connectivity and Smart Systems for Personalized Care


Barbosa, Sayonara
Dr. Sayonara F. F. Barbosa is a Professor at the University of Cincinnati, USA. Professor Barbosa is a member of the Editorial Board of the International Journal of Medica Informatics and the Journal of Nursing Scholarship. From 2016 to 2020, at the International Medical Informatics Association, she was Vice-Chair of Nursing Informatics Special Interest Group, Brazil Representative. Her experience includes nursing in intensive care and information technology in healthcare, health information technology, healthcare technology, patient safety and donation of organs and transplants

Chakraborty, Chinmay
Chinmay Chakraborty is an Associate Professor and Head, Centre of Innovation & Research (COIR) in Medical Technology, KIIT Deemed to be University, India. His main research interests include the Internet of Medical Things, Medical technology, m-Health/e-health, and AI-ML. He is an Editorial Board Member of various different journals and conferences.

Kumar Pani, Subhendu
Subhendu Kumar Pani received his Ph.D. from Utkal University Odisha, India. He has more than 16 years of teaching and research experience. His research interests include data mining, big data analysis, web data analytics, fuzzy decision making and computational intelligence. He is a fellow in SSARSC and life member in IE, ISTE, ISCA, OBA.OMS, SMIACSIT, SMUACEE, CSI.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.