E-Book, Englisch, 232 Seiten, E-Book
Chao / Chen Remote Sensing and Actuation Using Unmanned Vehicles
1. Auflage 2012
ISBN: 978-1-118-37718-5
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: 0 - No protection
E-Book, Englisch, 232 Seiten, E-Book
Reihe: IEEE Series on Systems Science and Engineering
ISBN: 978-1-118-37718-5
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: 0 - No protection
Unmanned systems and robotics technologies have become very popular recently owing to their ability to replace human beings in dangerous, tedious, or repetitious jobs. This book fill the gap in the field between research and real-world applications, providing scientists and engineers with essential information on how to design and employ networked unmanned vehicles for remote sensing and distributed control purposes. Target scenarios include environmental or agricultural applications such as river/reservoir surveillance, wind profiling measurement, and monitoring/control of chemical leaks.
Autoren/Hrsg.
Weitere Infos & Material
List of Figures
List of Tables
Foreword
Preface
Acknowledgments
Acronyms
1 Introduction
1.1 Monograph Roadmap
1.2 Research Motivations
1.3 Monograph Contributions
1.4 Monograph Organization
References
2 AggieAir: a Low-Cost Unmanned Aircraft System for Remote Sensing
2.1 Introduction
2.2 Small UAS Overview
2.3 AggieAir UAS Platform
2.4 OSAM-Paparazzi Interface Design for IMU Integration
2.5 Aggie Air UAS Test Protocol and Tuning
2.6 Typical Platforms
2.7 Chapter Summary
References
3 Attitude Estimation Using Low-Cost IMUs for Small Unmanned Aerial Vehicles
3.1 State Estimation Problem Definition
3.2 Rigid Body Rotations Basics
3.3 Low-Cost Inertial Measurement Units: Hardware and Sensor Suites
3.4 Attitude Estimation Using Complementary Filters on SO (3)
3.5 Attitude Estimation Using Extended Kalman Filters
3.6 AggieEKF: GPS-Aided Extended Kalman Filter
3.7 chapter Summary
References
4 Lateral Channel Fractional Order Flight Controller Design for a Small UAV
4.1 Introduction
4.2 Preliminaries of UAV Flight Control
4.3 Roll-Channel System Identification and Control
4.4 Fractional Order Controller Design
4.5 Simulation Results
4.6 UAV Flight Testing Results
4.7 Chapter Summary
References
5 Remote Sensing Using Single Unmanned Aerial Vehicle
5.1 Motivations for Remote Sensing
5.2 Remote Sensing Using Small UAVs
5.3 Sample Applications for AggieAir UAS
5.4 Chapter Summary
References
6 Cooperative Remote Sensing Using Multiple Unmanned Vehicles
6.1 Consensus-Based Formation control
6.2 Surface Wind Profile Measurement Using Multiple UAVs
6.3 Chapter Summary
References
7 Diffusion Control Using Mobile Sensor and Actuator Networks
7.1 Motivation and Background
7.2 Mathematical Modelling and Problem Formulation
7.3 CVT-Based Dynamical Actuator Motion Scheduling Algorithm
7.4 Grouping Effect in CVT-based Diffusion Control
7.5 Information Consensus in CVT Algorithm
7.6 Simulation Results
7.7 Chapter Summary
References
8 Conclusions and Future Research Suggestions
8.1 Conclusions
8.2 Future Research Suggestions
References
9 Appendix
9.1 List of Documents for CSOIS Flight Test Protocol
9.2 IMU/GPS Serial Communication Protocols
9.3 Paparazzi Autopilot Software Architecture: A Modification Guide
9.4 DiffMAS2D Code Modification Guide
References
Topic Index